ترغب بنشر مسار تعليمي؟ اضغط هنا

Robots that can adapt like animals

203   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Mouret
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot think outside the box to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robots intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury.



قيم البحث

اقرأ أيضاً

Predictive human models often need to adapt their parameters online from human data. This raises previously ignored safety-related questions for robots relying on these models such as what the model could learn online and how quickly could it learn i t. For instance, when will the robot have a confident estimate in a nearby humans goal? Or, what parameter initializations guarantee that the robot can learn the humans preferences in a finite number of observations? To answer such analysis questions, our key idea is to model the robots learning algorithm as a dynamical system where the state is the current model parameter estimate and the control is the human data the robot observes. This enables us to leverage tools from reachability analysis and optimal control to compute the set of hypotheses the robot could learn in finite time, as well as the worst and best-case time it takes to learn them. We demonstrate the utility of our analysis tool in four human-robot domains, including autonomous driving and indoor navigation.
129 - Fan Fei , Zhan Tu , Yilun Yang 2019
Insects and hummingbirds exhibit extraordinary flight capabilities and can simultaneously master seemingly conflicting goals: stable hovering and aggressive maneuvering, unmatched by small scale man-made vehicles. Flapping Wing Micro Air Vehicles (FW MAVs) hold great promise for closing this performance gap. However, design and control of such systems remain challenging due to various constraints. Here, we present an open source high fidelity dynamic simulation for FWMAVs to serve as a testbed for the design, optimization and flight control of FWMAVs. For simulation validation, we recreated the hummingbird-scale robot developed in our lab in the simulation. System identification was performed to obtain the model parameters. The force generation, open-loop and closed-loop dynamic response between simulated and experimental flights were compared and validated. The unsteady aerodynamics and the highly nonlinear flight dynamics present challenging control problems for conventional and learning control algorithms such as Reinforcement Learning. The interface of the simulation is fully compatible with OpenAI Gym environment. As a benchmark study, we present a linear controller for hovering stabilization and a Deep Reinforcement Learning control policy for goal-directed maneuvering. Finally, we demonstrate direct simulation-to-real transfer of both control policies onto the physical robot, further demonstrating the fidelity of the simulation.
75 - Matej Hoffmann 2020
Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent - yet, as is so often the case, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed. In the biological realm, evidence has been accumulated by diverse disciplines giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables to control the machine. In this article I compare the character of body representations in biology with their robotic counterparts and relate that to the differences in performance that we observe. I put forth a number of axes regarding the nature of such body models: fixed vs. plastic, amodal vs. modal, explicit vs. implicit, serial vs. parallel, modular vs. holistic, and centralized vs. distributed. An interesting trend emerges: on many of the axes, there is a sequence from robot body models, over body image, body schema, to the body representation in lower animals like the octopus. In some sense, robots have a lot in common with Ian Waterman - the man who lost his body - in that they rely on an explicit, veridical body model (body image taken to the extreme) and lack any implicit, multimodal representation (like the body schema) of their bodies. I will then detail how robots can inform the biological sciences dealing with body representations and finally, I will study which of the features of the body in the brain should be transferred to robots, giving rise to more adaptive and resilient, self-calibrating machines.
A robots mechanical parts routinely wear out from normal functioning and can be lost to injury. For autonomous robots operating in isolated or hostile environments, repair from a human operator is often not possible. Thus, much work has sought to aut omate damage recovery in robots. However, every case reported in the literature to date has accepted the damaged mechanical structure as fixed, and focused on learning new ways to control it. Here we show for the first time a robot that automatically recovers from unexpected damage by deforming its resting mechanical structure without changing its control policy. We found that, especially in the case of deep insult, such as removal of all four of the robots legs, the damaged machine evolves shape changes that not only recover the original level of function (locomotion) as before, but can in fact surpass the original level of performance (speed). This suggests that shape change, instead of control readaptation, may be a better method to recover function after damage in some cases.
Developing robust walking controllers for bipedal robots is a challenging endeavor. Traditional model-based locomotion controllers require simplifying assumptions and careful modelling; any small errors can result in unstable control. To address thes e challenges for bipedal locomotion, we present a model-free reinforcement learning framework for training robust locomotion policies in simulation, which can then be transferred to a real bipedal Cassie robot. To facilitate sim-to-real transfer, domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics. The learned policies enable Cassie to perform a set of diverse and dynamic behaviors, while also being more robust than traditional controllers and prior learning-based methods that use residual control. We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا