ترغب بنشر مسار تعليمي؟ اضغط هنا

WSClean: an implementation of a fast, generic wide-field imager for radio astronomy

603   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Offringa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.



قيم البحث

اقرأ أيضاً

The aimed high sensitivities and large fields of view of the new generation of interferometers impose to reach high dynamic range of order $sim$1:$10^6$ to 1:$10^8$ in the case of the Square Kilometer Array. The main problem is the calibration and co rrection of the Direction Dependent Effects (DDE) that can affect the electro-magnetic field (antenna beams, ionosphere, Faraday rotation, etc.). As shown earlier the A-Projection is a fast and accurate algorithm that can potentially correct for any given DDE in the imaging step. With its very wide field of view, low operating frequency ($sim30-250$ MHz), long baselines, and complex station-dependent beam patterns, the Low Frequency Array (LOFAR) is certainly the most complex SKA precursor. In this paper we present a few implementations of A-Projection applied to LOFAR that can deal with non-unitary station beams and non-diagonal Mueller matrices. The algorithm is designed to correct for all the DDE, including individual antenna, projection of the dipoles on the sky, beam forming and ionospheric effects. We describe a few important algorithmic optimizations related to LOFARs architecture allowing us to build a fast imager. Based on simulated datasets we show that A-Projection can give dramatic dynamic range improvement for both phased array beams and ionospheric effects. We will use this algorithm for the construction of the deepest extragalactic surveys, comprising hundreds of days of integration.
We describe an active antenna system for HF/VHF (long wavelength) radio astronomy that has been successfully deployed 256-fold as the first station (LWA1) of the planned Long Wavelength Array. The antenna system, consisting of crossed dipoles, an act ive balun/preamp, a support structure, and a ground screen has been shown to successfully operate over at least the band from 20 MHz (15 m wavelength) to 80 MHz (3.75 m wavelength) with a noise figure that is at least 6 dB better than the Galactic background emission noise temperature over that band. Thus, the goal to design and construct a compact, inexpensive, rugged, and easily assembled antenna system that can be deployed many-fold to form numerous large individual stations for the purpose of building a large, long wavelength synthesis array telescope for radio astronomical and ionospheric observations was met.
One of the possible approaches to detecting optical counterparts of GRBs requires monitoring large parts of the sky. This idea has gained some instrumental support in recent years, such as with the Pi of the Sky project. The broad sky coverage of the Pi of the Sky apparatus results from using cameras with wide-angle lenses (20x20 deg field of view). Optics of this kind introduce significant deformations of the point spread function (PSF), increasing with the distance from the frame centre. A deformed PSF results in additional uncertainties in data analysis. Our aim was to create a model describing highly deformed PSF in optical astronomy, allowing uncertainties caused by image deformations to be reduced. Detailed laboratory measurements of PSF, pixel sensitivity, and pixel response functions were performed. These data were used to create an effective high quality polynomial model of the PSF. Finally, tuning the model and tests in applications to the real sky data were performed. We have developed a PSF model that accurately describes even very deformed stars in our wide-field experiment. The model is suitable for use in any other experiment with similar image deformation, with a simple tuning of its parameters. Applying this model to astrometric procedures results in a significant improvement over standard methods, while basic photometry precision performed with the model is comparable to the results of an optimised aperture algorithm. Additionally, the model was used to search for a weak signal -- namely a possible gamma ray burst optical precursor -- showing very promising results. Precise modelling of the PSF function significantly improves the astrometric precision and enhances the discovery potential of a wide-field system with lens optics.
Very Long Baseline Interferometry (VLBI) offers unrivalled resolution in studies of celestial radio sources. The subjects of interest of the IAU Symposium No. 356, the Active Galactic Nuclei (AGN) of all types, constitute the major observing sample o f modern VLBI networks. At present, the largest in the world in terms of the number of telescopes and geographical coverage is the European VLBI Network (EVN), which operates under the open sky policy via peer-reviewed observing proposals. Recent EVN observations cover a broad range of science themes from high-sensitivity monitoring of structural changes in inner AGN areas to observations of tidal eruptions in AGN cores and investigation of redshift-dependent properties of parsec-scale radio structures of AGN. All the topics above should be considered as potentially rewarding scientific activities of the prospective African VLBI Network (AVN), a natural scientific ally of EVN. This contribution briefly describes the status and near-term strategy for the AVN development as a southern extension of the EVN-AVN alliance and as an eventual bridge to the Square Kilometre Array (SKA) with its mid-frequency core in South Africa.
140 - A. Rau , N. Meidinger , K. Nandra 2013
The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The i nstrument is designed to make optimal use of the grasp (collecting area times solid angle product) provided by the optical design of the Athena+ mirror system (Willingale et al. 2013), by combining a sensitive approx. 40 diameter field of view (baseline; 50 goal) DEPFET detector with a pixel size properly sampling the angular resolution of 5 arc sec on-axis (half energy width).This synthesis makes the WFI a very powerful survey instrument, significantly surpassing currently existing capabilities (Nandra et al. 2013; Aird et al. 2013). In addition, the WFI will provide unprecedented simultaneous high-time resolution and high count rate capabilities for the observation of bright sources with low pile-up and high efficiency. In this paper, we summarize the instrument design, the status of the technology development, and the baseline performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا