ترغب بنشر مسار تعليمي؟ اضغط هنا

CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

85   0   0.0 ( 0 )
 نشر من قبل Ke Han
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6times 10^{26}$ y at $1sigma$ ($9.5times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.

قيم البحث

اقرأ أيضاً

75 - N. S. Oblath 2013
The Project 8 experiment aims to measure the neutrino mass using tritium beta decays. Beta-decay electron energies will be measured with a novel technique: as the electrons travel in a uniform magnetic field their cyclotron radiation will be detected . The frequency of each electrons cyclotron radiation is inversely proportional to its total relativistic energy; therefore, by observing the cyclotron radiation we can make a precise measurement of the electron energies. The advantages of this technique include scalability, excellent energy resolution, and low backgrounds. The collaboration is using a prototype experiment to study the feasibility of the technique with a $^{83m}$Kr source. Demonstrating the ability to see the 17.8 keV and 30.2 keV conversion electrons from $^{83m}$Kr will show that it may be possible to measure tritium beta-decay electron energies ($Q approx 18.6$ keV) with their cyclotron radiation. Progress on the prototype, analysis and signal-extraction techniques, and an estimate of the potential future of the experiment will be discussed.
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at $sim$60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies ca used by current experimental uncertainty of $|Delta m^2_{32}|$. The standard $chi^2$ method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.
Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searc hes. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model independent mea surement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope $^{163}$Ho. In a calorimetric measurement the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed in 1982 by A. De Rujula and M. Lusignoli, but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of $^{130}$Te. CUORE is also suitable to search for low energy r are events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60keV. Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils in CUORE-0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا