ﻻ يوجد ملخص باللغة العربية
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope $^{163}$Ho. In a calorimetric measurement the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed in 1982 by A. De Rujula and M. Lusignoli, but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
The Project 8 experiment aims to measure the neutrino mass using tritium beta decays. Beta-decay electron energies will be measured with a novel technique: as the electrons travel in a uniform magnetic field their cyclotron radiation will be detected
The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates sys
HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV. HOLMES will perform a calorimetric measurement of the energy released in the decay of $^{163}$Ho. The calorimetric measurement eliminates systema
We propose a new experiment to search for a sterile neutrino in a few keV mass range at the Troitsk nu-mass facility. The expected signature corresponds to a kink in the electron energy spectrum in tritium beta-decay. The new goal compared to our pre
We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental