ﻻ يوجد ملخص باللغة العربية
In the recent paper (R. Willox and M. Hattori, arXiv:1406.5828), an integrable discretization of the nonlinear Schrodinger (NLS) equation is studied, which, they think, was discovered by Date, Jimbo and Miwa in 1983 and has been completely forgotten over the years. In fact, this discrete NLS hierarchy can be directly obtained from an elementary auto-Backlund transformation for the continuous NLS hierarchy and has been known since 1982. Nevertheless, it has been rediscovered again and again in the literature without attribution, so we consider it meaningful to mention overlooked original references on this discrete NLS hierarchy.
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach
This is a short review of the Kadomtsev-Petviashvili hierarchies of types B and C. The main objects are the $L$-operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function and the tau-
We give an action of the symmetric group on non-commuting indeterminates in terms of series in the corresponding Malcev-Newmann division ring. The action is constructed from the non-Abelian Hirota-Miwa (discrete KP) system. The corresponding companio
We consider solutions of the KP hierarchy which are elliptic functions of $x=t_1$. It is known that their poles as functions of $t_2$ move as particles of the elliptic Calogero-Moser model. We extend this correspondence to the level of hierarchies an