ﻻ يوجد ملخص باللغة العربية
We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of four-fold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.
Recent experimental findings on anomalous diffusion have demanded novel models that combine annealed (temporal) and quenched (spatial or static) disorder mechanisms. The comb-model is a simplified description of diffusion on percolation clusters, whe
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat
We perform a time-dependent study of the driven dynamics of overdamped particles which are placed in a one-dimensional, piecewise linear random potential. This set-up of spatially quenched disorder then exerts a dichotomous varying random force on th
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body interactions drawn from a Gaussian probability distribution. In the statistical physics framework, the potential energy is of the so-called $p=2$ spherical di
We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criteri