ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of Ultra-Long Wavelength interferometer in the Earth orbit and on the lunar surface

125   0   0.0 ( 0 )
 نشر من قبل Mo Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present simulations for interferometer arrays in Earth orbit and on the lunar surface to guide the design and optimization of space-based Ultra-Long Wavelength missions, such as those of Chinas ChangE program. We choose parameters and present simulations using simulated data to identify inter-dependencies and constraints on science and engineering parameters. A regolith model is created for the lunar surface array simulation, the results show that the lunar regolith will have an undesirable effect on the observation. We estimate data transmission requirement, calculate sensitivities for both cases, and discuss the trade-off between brightness temperature sensitivity and angular resolution for the Earth orbit array case.

قيم البحث

اقرأ أيضاً

The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. A utonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wavefront sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of $1,{rm nm}/sqrt{rm Hz}$ at Fourier frequencies above 100 mHz.
425 - J. Wang , L. Cao , X. M. Meng 2014
We reported the photometric calibration of Lunar-based Ultraviolet telescope (LUT), the first robotic astronomical telescope working on the lunar surface, for its first six months of operation on the lunar surface. Two spectral datasets (set A and B) from near-ultraviolet (NUV) to optical band were constructed for 44 International Ultraviolet Explorer (IUE) standards, because of the LUTs relatively wide wavelength coverage. Set A were obtained by extrapolating the IUE NUV spectra ($lambda<3200AA$) to optical band basing upon the theoretical spectra of stellar atmosphere models. Set B were exactly the theoretical spectra from 2000AA to 8000AA extracted from the same model grid. In total, seven standards have been observed in 15 observational runs until May 2014. The calibration results show that the photometric performance of LUT is highly stable in its first six months of operation. The magnitude zero points obtained from the two spectral datasets are also consistent with each other, i.e., $mathrm{zp=17.54pm0.09}$mag (set A) and $mathrm{zp=17.52pm0.07}$mag (set B).
The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Upon completion, LWA will consist of 53 phased array stations distributed over a region about 400 km in diameter in the state of N ew Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5 sigma, 8 MHz, 2 polarizations, 1 hr, zenith) in 20-80 MHz; with resolution and field of view of (8, 8 deg) and (2,2 deg) at 20 MHz and 80 MHz, respectively. All 256 dipole antennas are in place for the first station of the LWA (called LWA-1), and commissioning activities are well underway. The station is located near the core of the EVLA, and is expected to be fully operational in early 2011.
82 - H. Z. Wang , J. Zhang , Q. Q. Shi 2019
Understanding the sources of lunar water is crucial for studying the history of lunar evolution, and also the solar wind interaction with the Moon and other airless bodies. Recent observations revealed lunar hydration is very likely a surficial dynam ic process driven by solar wind. Solar wind is shielded over a period of 3-5 days as the Moon passes through the Earths magnetosphere, during which a significant loss of hydration is expected from previous works.Here we study lunar hydration inside the magnetosphere using orbital spectral data, which unexpectedly found that the polar surficial OH/H2O abundance remains at the same level when in the solar wind and in the magnetosphere. We suggest that particles from the magnetosphere (Earth wind, naturally different from solar wind) contribute to lunar hydration. From lunar orbital plasma observations, we find the existence of optimal energy ranges, other than 1 keV as previously thought, for surface hydration formation. These optimal energy ranges deduced from space observations may provide strong implications for laboratory experiments simulating lunar hydration processes.
The Long Wavelength Array Software Library (LSL) is a Python module that provides a collection of utilities to analyze and export data collected at the first station of the Long Wavelength Array, LWA1. Due to the nature of the data format and large-N ($gtrsim$100 inputs) challenges faced by the LWA, currently available software packages are not suited to process the data. Using tools provided by LSL, observers can read in the raw LWA1 data, synthesize a filter bank, and apply incoherent de-dispersion to the data. The extensible nature of LSL also makes it an ideal tool for building data analysis pipelines and applying the methods to other low frequency arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا