ترغب بنشر مسار تعليمي؟ اضغط هنا

Earth wind as a possible source of lunar surface hydration

83   0   0.0 ( 0 )
 نشر من قبل Huizi Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the sources of lunar water is crucial for studying the history of lunar evolution, and also the solar wind interaction with the Moon and other airless bodies. Recent observations revealed lunar hydration is very likely a surficial dynamic process driven by solar wind. Solar wind is shielded over a period of 3-5 days as the Moon passes through the Earths magnetosphere, during which a significant loss of hydration is expected from previous works.Here we study lunar hydration inside the magnetosphere using orbital spectral data, which unexpectedly found that the polar surficial OH/H2O abundance remains at the same level when in the solar wind and in the magnetosphere. We suggest that particles from the magnetosphere (Earth wind, naturally different from solar wind) contribute to lunar hydration. From lunar orbital plasma observations, we find the existence of optimal energy ranges, other than 1 keV as previously thought, for surface hydration formation. These optimal energy ranges deduced from space observations may provide strong implications for laboratory experiments simulating lunar hydration processes.

قيم البحث

اقرأ أيضاً

76 - T. Karalidi , D.M. Stam , F. Snik 2012
The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earths disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.
With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The a tmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earths atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.
An ancient Venusian rock could constrain that planets history, and reveal the past existence of oceans. Such samples may persist on the Moon, which lacks an atmosphere and significant geological activity. We demonstrate that if Venus atmosphere was a t any point thin and similar to Earths, then asteroid impacts transferred potentially detectable amounts of Venusian surface material to the Lunar regolith. Venus experiences an enhanced flux relative to Earth of asteroid collisions that eject lightly-shocked ($lesssim 40$ GPa) surface material. Initial launch conditions plus close-encounters and resonances with Venus evolve ejecta trajectories into Earth-crossing orbits. Using analytic models for crater ejecta and textit{N}-body simulations, we find more than $0.07%$ of the ejecta lands on the Moon. The Lunar regolith will contain up to 0.2 ppm Venusian material if Venus lost its water in the last 3.5 Gyr. If water was lost more than 4 Gyr ago, 0.3 ppm of the deep megaregolith is of Venusian origin. About half of collisions between ejecta and the Moon occur at $lesssim6$ km s$^{-1}$, which hydrodynamical simulations have indicated is sufficient to avoid significant shock alteration. Therefore, recovery and isotopic analyses of Venusian surface samples would determine with high confidence both whether and when Venus harbored liquid oceans and/or a lower-mass atmosphere. Tests on brecciated clasts in existing Lunar samples from Apollo missions may provide an immediate resolution. Alternatively, regolith characterization by upcoming Lunar missions may provide answers to these fundamental questions surrounding Venus evolution.
It has been hypothesized that the impactors that created the majority of the observable craters on the ancient lunar highlands were derived from the main asteroid belt in such a way that preserved their size-frequency distribution. A more limited ver sion of this hypothesis, dubbed the E-belt hypothesis, postulates that a destabilized contiguous inner extension of the main asteroid belt produced a bombardment limited to those craters younger than Nectaris basin. We investigate these hypotheses with a Monte Carlo code called the Cratered Terrain Evolution Model (CTEM). We find that matching the observed number of lunar highlands craters with Dc~100 km requires that the total number of impacting asteroids with Di>10 km be no fewer than 4x10-6 km-2. However, this required mass of impactors has <1% chance of producing only a single basin larger than the ~1200 km Imbrium basin; instead, these simulations are likely to produce more large basins than are observed on the Moon. This difficulty in reproducing the lunar highlands cratering record with a main asteroid belt SFD arises because the main belt is relatively abundant in the objects that produce these megabasins that are larger than Imbrium. We also find that the main asteroid belt SFD has <16% chance of producing Nectarian densities of Dc>64 km craters while not producing a crater larger than Imbrium, as required by the E-belt hypothesis. These results suggest that the lunar highlands were unlikely to have been bombarded by a population whose size-frequency distribution resembles that of the currently observed main asteroid belt. We suggest that the population of impactors that cratered the lunar highlands had a somewhat similar size-frequency distribution as the modern main asteroid belt, but had a smaller ratio of objects capable of producing megabasins compared to objects capable of producing ~100 km craters.
98 - Enric Palle 2009
Of the 342 planets discovered so far orbiting other stars, 58 transit the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the fingerprints of the Earths ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا