ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in the vicinity of antiferromagnetic order in CrAs

51   0   0.0 ( 0 )
 نشر من قبل Jinguang Cheng
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the common features of unconventional, magnetically mediated superconductivity as found in the heavy-fermions, high-transition-temperature (high-Tc) cuprates, and iron pnictides superconductors is that the superconductivity emerges in the vicinity of long-range antiferromagnetically ordered state.[1] In addition to doping charge carriers, the application of external physical pressure has been taken as an effective and clean approach to induce the unconventional superconductivity near a magnetic quantum critical point (QCP).[2,3] Superconductivity has been observed in a majority of 3d transition-metal compounds,[4-9] except for the Cr- and Mn-based compounds in the sense that the low-lying states near Fermi level are dominated by their 3d electrons. Herein, we report on the discovery of superconductivity on the verge of antiferromagnetic order in CrAs via the application of external high pressure. Bulk superconductivity with Tc ~ 2 K emerges at the critical pressure Pc ~ 8 kbar, where the first-order antiferromagnetic transition at TN = 265 K under ambient pressure is completely suppressed. Abnormal normal-state properties associated with a magnetic QCP have been observed nearby Pc. The close proximity of superconductivity to an antiferromagnetic order suggests an unconventional pairing mechanism for the superconducting state of CrAs. The present finding opens a new avenue for searching novel superconductors in the Cr and other transitional-metal based systems.

قيم البحث

اقرأ أيضاً

57 - C. Y. Guo , M. Smidman , B. Shen 2017
Superconductivity was recently observed in CrAs as the helimagnetic order is suppressed by applying pressure, suggesting possible unconventional superconductivity. To reveal the nature of the superconducting order parameter of CrAs, here we report th e angular dependence of the upper critical field under pressure. Upon rotating the field by 360 degrees in the $bc$-plane, six maxima are observed in the upper critical field, where the oscillations have both six-fold and two-fold symmetric components. Our analysis suggests the presence of an unconventional odd-parity spin triplet state.
Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P_c between the helimagn etic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T_1 reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T_1 in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.
We report resistivity measurements of the helimagnet CrAs under pressures. The helimagnetic transition with T_N ~ 265 K at ambient pressure is completely suppressed above a critical pressure of P_c ~ 0.7 GPa, and superconductivity is observed at ~2.2 K for zero resistance, which exists in a wide pressure range extending beyond 3 GPa. Both the upper critical field H_{c2} and the coefficient A in the resistivity increase toward P_c, suggesting that the superconductivity of CrAs is mediated by electronic correlations enhanced in the vicinity of the helimagnetic phase.
The pressure dependence of the structural ($T_s$), antiferromagnetic ($T_m$), and superconducting ($T_c$) transition temperatures in FeSe is investigated on the basis of the 16-band $d$-$p$ model. At ambient pressure, a shallow hole pocket disappears due to the correlation effect, as observed in the angular-resolved photoemission spectroscopy (ARPES) and quantum oscillation (QO) experiments, resulting in the suppression of the antiferromagnetic order, in contrast to the other iron pnictides. The orbital-polarization interaction between the Fe $d$ orbital and Se $p$ orbital is found to drive the ferro-orbital order responsible for the structural transition without accompanying the antiferromagnetic order. The pressure dependence of the Fermi surfaces is derived from the first-principles calculation and is found to well account for the opposite pressure dependences of $T_s$ and $T_m$, around which the enhanced orbital and magnetic fluctuations cause the double-dome structure of the eigenvalue $lambda$ in the Eliashberg equation, as consistent with that of $T_c$ in FeSe.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is sues which need to be resolved. In the present work, the suppression of magnetism and the occurrence of superconductivity in CrAs as a function of pressure ($p$) were studied by means of muon spin rotation. The magnetism remains bulk up to $psimeq3.5$~kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at $psimeq$7~kbar. At 3.5 kbar superconductivity abruptly appears with its maximum $T_c simeq 1.2$~K which decreases upon increasing the pressure. In the intermediate pressure region ($3.5lesssim plesssim 7$~kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature ($T_c$) and of the superfluid density ($rho_s$). A scaling of $rho_s$ with $T_c^{3.2}$ as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا