ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing New Ideas Regarding the Nature of Interstellar Extinction

105   0   0.0 ( 0 )
 نشر من قبل David Turner Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of Galactic interstellar extinction is tested using reddening line parameters for several fields in conjunction with equivalent widths $W(lambda4430)$ for the diffuse interstellar band at $4430$ AA. The Cardelli et al.$;$relations [29] at infrared, optical, and ultraviolet wavelengths are inconsistent with the newly-derived quadratic variation of $R_V({rm observed})$ on reddening slope $X$. A minimum of $R_V=2.82pm0.06$ exists for $X=0.83pm0.10$, and is argued to represent true Galactic extinction described by $A(lambda)propto lambda^{-1.375}$. It matches expectations for a new description of extinction in the infrared, optical, and ultraviolet by Zagury [32]. Additional consequences, reddened stars with no 2175 AA$;$feature and a correlation of normalized $lambda4430$ absorption with $X$, are not predicted by the Cardelli et al.$;$relation [29]. Known variations in $X$ from 0.62 to 0.83, and corresponding variations in $R_V({rm observed})$ from 4.0 to 2.8, presumably result from forward-scattered starlight in the ultraviolet contaminating optical light of stars affected by dust extinction. A new understanding of the true nature of interstellar extinction is important for establishing an accurate picture of the extragalactic distance scale, which in turn is related to our understanding of the nature of the Universe.



قيم البحث

اقرأ أيضاً

New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructe d for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-Solar.
The paper is a brief overview of the works by Iosif S. Shklovsky (1916--1985), carried out over almost 30 years (1955--1985), on the nature of activity (primarily in the radio frequency range) in nuclei of some galaxies. Worthy of note is Shklovsky s pioneering work of 1962, in which he made an attempt to consider possible evolutionary tracks of extragalactic radio sources by constructing an analog of the Herzsprung--Russel diagram for stars (radio luminosity at 160 MHz was taken instead of optical luminosity; total radio size at the same frequency, as the other parameter). Later works by other authors are also discussed, where similar diagrams were plotted using a larger observational material. Special attention is paid to the evolution of Shklovskys views regarding the possible ways of gas getting into radio galaxies central regions, followed by high-velocity ejections of magnetized plasmons from their nuclei. In his assumptions, Shklovsky was mainly based on the observational data for the properties of the closest radio galaxy, NGC 4486 (Virgo A, M87), which he believed to be the same reference standard for extragalactic radio astronomy as the Crab Nebula for galactic radio astronomy. Shklovskys approach to the recurrence of the activity phenomenon in galactic nuclei and the one-sided character of radio ejections from them is discussed. Modern views on these issues are also briefly considered.
The interstellar extinction law in twenty open star clusters namely Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 24 01, NGC 6231, NGC 6823 and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B-V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362 and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69 and IC 4996. We found that differential colour-excess which may be due to the occurrence of dust and gas inside the clusters, decreases with age of the clusters. A spatial variation of colour excess is found in NGC 6193 in sense that it decreases from east to west in cluster region. For cluster Berkeley 7, NGC 7380 and NGC 6871, a dependence of colour excess with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530 and one star in NGC 6231 have colour excess flux in near-IR. This indicates that these stars may have circumstellar material around them.
The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel & Lazarian method to estimate the Alfven Mach number using the struct ure function anisotropy in velocity centroid data from position-position-velocity maps. We utilize 3D magnetohydrodynamic (MHD) simulations of fully developed turbulence, with a large range of sonic and Alfvenic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfven Mach number dependency found in Esquivel & Lazarian (2011) might change when taking the second moment of the position-position-velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e. Alfven Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line-of-sight is parallel to up to ~45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvenic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.
Interstellar dust plays a central role in shaping the detailed structure of the interstellar medium, thus strongly influencing star formation and galaxy evolution. Dust extinction provides one of the main pillars of our understanding of interstellar dust while also often being one of the limiting factors when interpreting observations of distant objects, including resolved and unresolved galaxies. The ultraviolet (UV) and mid-infrared (MIR) wavelength regimes exhibit features of the main components of dust, carbonaceous and silicate materials, and therefore provide the most fruitful avenue for detailed extinction curve studies. Our current picture of extinction curves is strongly biased to nearby regions in the Milky Way. The small number of UV extinction curves measured in the Local Group (mainly Magellanic Clouds) clearly indicates that the range of dust properties is significantly broader than those inferred from the UV extinction characteristics of local regions of the Milky Way. Obtaining statistically significant samples of UV and MIR extinction measurements for all the dusty Local Group galaxies will provide, for the first time, a basis for understanding dust grains over a wide range of environments. Obtaining such observations requires sensitive medium-band UV, blue-optical, and mid-IR imaging and followup R ~ 1000 spectroscopy of thousands of sources. Such a census will revolutionize our understanding of the dependence of dust properties on local environment providing both an empirical description of the effects of dust on observations as well as strong constraints on dust grain and evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا