ﻻ يوجد ملخص باللغة العربية
Indirect searches can be used to test dark matter models against expected signals in various channels, in particular antiprotons. With antiproton data available soon at higher and higher energies, it is important to test the dark matter hypothesis against alternative astrophysical sources, e.g. secondaries accelerated in supernova remnants. We investigate the two signals from different dark models and different supernova remnant parameters, as forecasted for the AMS-02, and show that they present a significant degeneracy.
We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter
The supersymmetric model is one of the most attractive extensions of the Standard Model of particle physics. In light of the most recently reported anomaly of the muon g-2 measurement by the FermiLab E989 experiment, and the excesses of gamma rays at
We discuss the origin of the anti-helium-3 and -4 events possibly detected by AMS-02. Using up-to-date semi-analytical tools, we show that spallation from primary hydrogen and helium nuclei onto the ISM predicts a $overline{{}^3{rm He}}$ flux typical
The AMS-02 collaboration has recently released data on the positron fraction $e^+/(e^-+e^+)$ up to energies of about 350 GeV. If one insists on interpreting the observed excess as a dark matter signal, then we find it is best described by a TeV-scale
The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampli