ترغب بنشر مسار تعليمي؟ اضغط هنا

FFTS readout for large arrays of Microwave Kinetic Inductance Detectors

142   0   0.0 ( 0 )
 نشر من قبل Stephen Yates Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing $sim$1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of Fast Fourier Transform Spectrometer (FFTS) readout, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios.



قيم البحث

اقرأ أيضاً

Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation insi de the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the $sim-30$ dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor $>$10. With the on-chip stray light absorber the point source response is close to simulations down to the $sim-35$ dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.
Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-co upled focal planes of the OLIMPO balloon-borne telescope, working in the spectral bands centered at 150 GHz, 250 GHz, 350 GHz, and 460 GHz. This is aimed at measuring the spectrum of the Sunyaev-Zeldovich effect for a number of galaxy clusters, and will validate LEKIDs technology in a space-like environment. Our detectors are optimized for an intermediate background level, due to the presence of residual atmosphere and room--temperature optical system and they operate at a temperature of 0.3 K. The LEKID planar superconducting circuits are designed to resonate between 100 and 600 MHz, and to match the impedance of the feeding waveguides; the measured quality factors of the resonators are in the $10^{4}-10^{5}$ range, and they have been tuned to obtain the needed dynamic range. The readout electronics is composed of a $cold$ $part$, which includes a low noise amplifier, a dc$-$block, coaxial cables, and power attenuators; and a $room-temperature$ $part$, FPGA$-$based, including up and down-conversion microwave components (IQ modulator, IQ demodulator, amplifiers, bias tees, attenuators). In this contribution, we describe the optimization, fabrication, characterization and validation of the OLIMPO detector system.
We present the development of a second generation digital readout system for photon counting microwave kinetic inductance detector (MKID) arrays operating in the optical and near-IR wavelength bands. Our system retains much of the core signal process ing architecture from the first generation system, but with a significantly higher bandwidth, enabling readout of kilopixel MKID arrays. Each set of readout boards is capable of reading out 1024 MKID pixels multiplexed over 2 GHz of bandwidth; two such units can be placed in parallel to read out a full 2048 pixel microwave feedline over a 4 -- 8 GHz band. As in the first generation readout, our system is capable of identifying, analyzing, and recording photon detection events in real time with a time resolution of order a few microseconds. Here, we describe the hardware and firmware, and present an analysis of the noise properties of the system. We also present a novel algorithm for efficiently suppressing IQ mixer sidebands to below -30 dBc.
105 - K. Karatsu , A. Endo , J. Bueno 2019
For space observatories, the glitches caused by high energy phonons created by the interaction of cosmic ray particles with the detector substrate lead to dead time during observation. Mitigating the impact of cosmic rays is therefore an important re quirement for detectors to be used in future space missions. In order to investigate possible solutions, we carry out a systematic study by testing four large arrays of Microwave Kinetic Inductance Detectors (MKIDs), each consisting of $sim$960 pixels and fabricated on monolithic 55 mm $times$ 55 mm $times$ 0.35 mm Si substrates. We compare the response to cosmic ray interactions in our laboratory for different detector arrays: A standard array with only the MKID array as reference; an array with a low $T_c$ superconducting film as phonon absorber on the opposite side of the substrate; and arrays with MKIDs on membranes. The idea is that the low $T_c$ layer down-converts the phonon energy to values below the pair breaking threshold of the MKIDs, and the membranes isolate the sensitive part of the MKIDs from phonons created in the substrate. We find that the dead time can be reduced up to a factor of 40 when compared to the reference array. Simulations show that the dead time can be reduced to below 1 % for the tested detector arrays when operated in a spacecraft in an L2 or a similar far-Earth orbit. The technique described here is also applicable and important for large superconducting qubit arrays for future quantum computers.
The energy resolution of a single photon counting Microwave Kinetic Inductance Detector (MKID) can be degraded by noise coming from the primary low temperature amplifier in the detectors readout system. Until recently, quantum limited amplifiers have been incompatible with these detectors due to dynamic range, power, and bandwidth constraints. However, we show that a kinetic inductance based traveling wave parametric amplifier can be used for this application and reaches the quantum limit. The total system noise for this readout scheme was equal to ~2.1 in units of quanta. For incident photons in the 800 to 1300 nm range, the amplifier increased the average resolving power of the detector from ~6.7 to 9.3 at which point the resolution becomes limited by noise on the pulse height of the signal. Noise measurements suggest that a resolving power of up to 25 is possible if redesigned detectors can remove this additional noise source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا