ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic orbitals in high-harmonic generation from CO molecules

255   0   0.0 ( 0 )
 نشر من قبل Bin Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify that both the dynamic core polarization and dynamic orbital deformation are important in the orientation-dependent high-harmonic generation of CO molecules subjected to intense few cycle laser fields. These polarization dynamics allow for the observation of strong orientation effects and dynamic minimum in the harmonic spectra. The generated attosecond pulses can be greatly affected by these multielectron effects. This work sheds light on future development of dynamic orbital imaging on attosecond time scale.



قيم البحث

اقرأ أيضاً

Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic energy is increased. We also show that with the increase of the electron-electron interaction energy overall the HHG rate is suppressed. We demonstrate that the C$_{70}$ molecule shows richer HHG spectra and a stronger high-harmonic intensity than the C$_{60}$.
Electron quantum path interferences in strongly laser-driven aligned molecules and their dependence on the molecular alignment is an essential open problem in strong-field molecular physics. Here, we demonstrate an approach which provides direct acce ss to the observation of these interference processes. The approach is based on the combination of the time-gated-ion-microscopy technique with a pump-probe arrangement used to align the molecules and generate high-order harmonics. By spatially resolving the interference pattern produced by the spatiotemporal overlap of the harmonics emitted by the short and long electron quantum paths, we have succeeded in measuring in situ their phase difference and disclose their dependence on molecular alignment. The findings constitute a vital step towards an understanding of strong-field molecular physics and the development of attosecond spectroscopy approaches without the use of auxiliary atomic references.
We show that the dependence of high-order harmonic generation (HHG) on the molecular orientation can be understood within a theoretical treatment that does not involve the strong field of the laser. The results for H_2 show excellent agreement with t ime-dependent strong field calculations for model molecules, and this motivates a prediction for the orientation dependence of HHG from the N_2 3s_g valence orbital. For both molecules, we find that the polarization of recombination photons is influenced by the molecular orientation. The variations are particularly pronounced for the N_2 valence orbital, which can be explained by the presence of atomic p-orbitals.
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro m simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schrodinger equation, for the case of H$_2^+$ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $romega$ and $somega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field pos sesses dynamical symmetry, which can be adjusted to the symmetry of the molecular Hamiltonian and used to investigate the molecular symmetry. For polyatomic molecules having the $C_{r+s}$ symmetry only the harmonics $n=q(r+s)pm r$, $q=1,2,ldots$, are emitted having the ellipticity $varepsilon_n=pm 1$. We illustrate this using the example of the planar molecules BH$_3$ and BF$_3$, which obey the $C_3$ symmetry. We show that for the BF$_3$ molecule, similarly to atoms with a $p$ ground state, there is a strong asymmetry in the emission of high harmonics with opposite helicities. This asymmetry depends on the molecular orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا