ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying reionization with the next generation of Ly-alpha emitter surveys

415   0   0.0 ( 0 )
 نشر من قبل Hannes Jensen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the prospects for constraining the ionized fraction of the intergalactic medium (IGM) at $z>6$ with the next generation of large Ly$alpha$ emitter surveys. We make predictions for the upcoming Subaru Hyper Suprime-Cam (HSC) Ly$alpha$ survey and a hypothetical spectroscopic survey performed with the James Webb Space Telescope (JWST). Considering various scenarios where the observed evolution of the Ly$alpha$ luminosity function of Ly$alpha$ emitters at $z>6$ is explained partly by an increasingly neutral IGM and partly by intrinsic galaxy evolution, we show how clustering measurements will be able to distinguish between these scenarios. We find that the HSC survey should be able to detect the additional clustering induced by a neutral IGM if the global IGM neutral fraction is greater than $sim$20 per cent at $z=6.5$. If measurements of the Ly$alpha$ equivalent widths (EWs) are also available, neutral fractions as small as 10 per cent may be detectable by looking for correlation between the EW and the local number density of objects. In this case, if it should turn out that the IGM is significantly neutral at $z=6.5$ and the intrinsic EW distribution is relatively narrow, the observed EWs can also be used to construct a map of the locations and approximate sizes of the largest ionized regions. For the JWST survey, the results appear a bit less optimistic. Since such surveys probe a large range of redshifts, the effects of the IGM will be mixed up with any intrinsic galaxy evolution that is present, making it difficult to disentangle the effects. However, we show that a survey with the JWST will have a possibility of observing a large group of galaxies at $zsim7$, which would be a strong indication of a partially neutral IGM.

قيم البحث

اقرأ أيضاً

89 - S. Baek , A. Ferrara , B. Semelin 2012
We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.
Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of re ionization near $ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $ell$ region, $2<ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zeldovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $sigma_8$, at $1%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $sigma(z_{rm re})=1.1$ and $sigma(Delta z_{rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
We carried out extended spectroscopic confirmations of Ly-alpha emitters (LAEs) at z=6.5 and 5.7 in the Subaru Deep Field. Now, the total number of spectroscopically confirmed LAEs is 45 and 54 at z=6.5 and 5.7, respectively, and at least 81% (70%) o f our photometric candidates at z=6.5 (5.7) have been spectroscopically identified as real LAEs. We made careful measurements of the Ly-alpha luminosity, both photometrically and spectroscopically, to accurately determine the Ly-alpha and rest-UV luminosity functions (LFs). The substantially improved evaluation of the Ly-alpha LF at z=6.5 shows an apparent deficit from z=5.7 at least at the bright end, and a possible decline even at the faint end, though small uncertainties remain. The rest-UV LFs at z=6.5 and 5.7 are in good agreement, at least at the bright end, in clear contrast to the differences seen in the Ly-alpha LF. These results imply an increase in the neutral fraction of the intergalactic medium from z=5.7 to 6.5. The rest-frame equivalent width (EW_0) distribution at z=6.5 seems to be systematically smaller than z=5.7, and it shows an extended tail toward larger EW_0. The bright end of the rest-UV LF can be reproduced from the observed Ly-alpha LF and a reasonable EW_0-UV luminosity relation. Integrating this rest-UV LF provides the first measurement of the contribution of LAEs to the photon budget required for reionization. The derived UV LF suggests that the fractional contribution of LAEs to the photon budget among Lyman break galaxies significantly increases towards faint magnitudes. Low-luminosity LAEs could dominate the ionizing photon budget, though this inference depends strongly on the uncertain faint-end slope of the Ly-alpha LF.
The coming decade will be an exciting period for dark energy research, during which astronomers will address the question of what drives the accelerated cosmic expansion as first revealed by type Ia supernova (SN) distances, and confirmed by later ob servations. The mystery of dark energy poses a challenge of such magnitude that, as stated by the Dark Energy Task Force (DETF), nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. The lack of multiple complementary precision observations is a major obstacle in developing lines of attack for dark energy theory. This lack is precisely what next-generation surveys will address via the powerful techniques of weak lensing (WL) and baryon acoustic oscillations (BAO) -- galaxy correlations more generally -- in addition to SNe, cluster counts, and other probes of geometry and growth of structure. Because of their unprecedented statistical power, these surveys demand an accurate understanding of the observables and tight control of systematics. This white paper highlights the opportunities, approaches, prospects, and challenges relevant to dark energy studies with wide-deep multiwavelength photometric redshift surveys. Quantitative predictions are presented for a 20000 sq. deg. ground-based 6-band (ugrizy) survey with 5-sigma depth of r~27.5, i.e., a Stage 4 survey as defined by the DETF.
Detections of the cross correlation signal between the 21cm signal during reionization and high-redshift Lyman Alpha emitters (LAEs) are subject to observational uncertainties which mainly include systematics associated with radio interferometers and LAE selection. These uncertainties can be reduced by increasing the survey volume and/or the survey luminosity limit, i.e. the faintest detectable Lyman Alpha (Ly$alpha$) luminosity. We use our model of high-redshift LAEs and the underlying reionization state to compute the uncertainties of the 21cm-LAE cross correlation function at $zsimeq6.6$ for observations with SKA1-Low and LAE surveys with $Delta z=0.1$ for three different values of the average IGM ionization state ($langlechi_mathrm{HI}rangle$=0.1, 0.25, 0.5). At $zsimeq6.6$, we find SILVERRUSH type surveys, with a field of view of 21 deg$^2$ and survey luminosity limits of $L_alphageq7.9times10^{42}$erg~s$^{-1}$, to be optimal to distinguish between an inter-galactic medium (IGM) that is 50%, 25% and 10% neutral, while surveys with smaller fields of view and lower survey luminosity limits, such as the 5 and 10 deg$^2$ surveys with WFIRST, can only discriminate between a 50% and 10% neutral IGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا