ترغب بنشر مسار تعليمي؟ اضغط هنا

The universe evolution in exponential $F(R)$-gravity

73   0   0.0 ( 0 )
 نشر من قبل Lorenzo Sebastiani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Bamba




اسأل ChatGPT حول البحث

A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution of the universe is performed. Furthermore, a unified model for early and late-time acceleration is proposed and studied.

قيم البحث

اقرأ أيضاً

One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level , where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
We investigate the qualitative evolution of (D+1)-dimensional cosmological models in f(R) gravity for the general case of the function f(R). The analysis is specified for various examples, including the (D+1)-dimensional generalization of the Starobi nsky model, models with polynomial and exponential functions. The cosmological dynamics are compared in the Einstein and Jordan representations of the corresponding scalar-tensor theory. The features of the cosmological evolution are discussed for Einstein frame potentials taking negative values in certain regions of the field space.
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu lting f(R) model has some remarkable properties. It naturally exhibits an unstable de Sitter era in the ultraviolet (UV), dynamically connected to a stable de Sitter era in the IR, via a period of radiation and matter domination, thereby describing a non-singular universe. We find that the UV de Sitter point is one of an infinite set, which make the UV RG fixed point inaccessible to classical cosmological evolution. In the vicinity of the fixed point, the model behaves as R^2 gravity, while it correctly recovers General Relativity at solar system scales. In this simplified model, the fluctuations are too large to be the observed ones, and more ingredients in the action are needed.
We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا