ﻻ يوجد ملخص باللغة العربية
We show that the averaged characteristic polynomial and the averaged inverse characteristic polynomial, associated with Hermitian matrices whose elements perform a random walk in the space of complex numbers, satisfy certain partial differential, diffusion-like, equations. These equations are valid for matrices of arbitrary size. Their solutions can be given an integral representation that allows for a simple study of their asymptotic behaviors for a broad range of initial conditions.
We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example of a chaotic quantum system where a spectral statistic can be evaluated in terms of periodic orb
It was recently conjectured by Fyodorov, Hiary and Keating that the maximum of the characteristic polynomial on the unit circle of a $Ntimes N$ random unitary matrix sampled from the Haar measure grows like $CN/(log N)^{3/4}$ for some random variable
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric ${pm 1}$-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation i
We consider stochastic and open quantum systems with a finite number of states, where a stochastic transition between two specific states is monitored by a detector. The long-time counting statistics of the observed realizations of the transition, pa
We compare the Ornstein-Uhlenbeck process for the Gaussian Unitary Ensemble to its non-hermitian counterpart - for the complex Ginibre ensemble. We exploit the mathematical framework based on the generalized Greens functions, which involves a new, hi