ﻻ يوجد ملخص باللغة العربية
It was recently conjectured by Fyodorov, Hiary and Keating that the maximum of the characteristic polynomial on the unit circle of a $Ntimes N$ random unitary matrix sampled from the Haar measure grows like $CN/(log N)^{3/4}$ for some random variable $C$. In this paper, we verify the leading order of this conjecture, that is, we prove that with high probability the maximum lies in the range $[N^{1 - varepsilon},N^{1 + varepsilon}]$, for arbitrarily small $varepsilon$. The method is based on identifying an approximate branching random walk in the Fourier decomposition of the characteristic polynomial, and uses techniques developed to describe the extremes of branching random walks and of other log-correlated random fields. A key technical input is the asymptotic analysis of Toeplitz determinants with dimension-dependent symbols. The original argument for these asymptotics followed the general idea that the statistical mechanics of $1/f$-noise random energy models is governed by a freezing transition. We also prove the conjectured freezing of the free energy for random unitary matrices.
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric ${pm 1}$-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation i
We consider the empirical eigenvalue distribution of an $mtimes m$ principle submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. Earlier work of Petz and Reffy identified the limiting spectral measure if $frac{m}{n
We consider the empirical eigenvalue distribution of an $mtimes m$ principal submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. For $n$ and $m$ large with $frac{m}{n}=alpha$, the empirical spectral measure is well
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.