ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the dynamics of modulation instability (MI) in two-dimensional spin-orbit coupled Bose-Einstein condensates (BECs). The analysis is performed for equal densities of pseudo-spin components. Different combination of the signs of intra- and inter-component interaction strengths are considered, with a particular emphasize on repulsive interactions. We observe that the unstable modulation builds from originally miscible condensates, depending on the combination of the signs of the intra- and inter-component interaction strengths. The repulsive intra- and inter-component interactions admit instability and the MI immiscibility condition is no longer significant. Influence of interaction parameters such as spin-orbit and Rabi coupling on MI are also investigated. The spin-orbit coupling (SOC) inevitably contributes to instability regardless of the nature of the interaction. In the case of attractive interaction, SOC manifest in enhancing the MI. Thus, a comprehensive study of MI in two-dimensional spin-orbit coupled binary BECs of pseudo-spin components is presented.
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of soli
We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may
We present OpenMP version of a Fortran program for solving the Gross-Pitaevskii equation for a harmonically trapped three-component rotating spin-1 spinor Bose-Einstein condensate (BEC) in two spatial dimensions with or without spin-orbit (SO) and Ra
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize