ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal effects and switching kinetics in silver/manganite memristive systems: Probing oxygen vacancies diffusion

308   0   0.0 ( 0 )
 نشر من قبل German Patterson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the switching kinetics of oxygen vacancies (Ov) diffusion in LPCMO-Ag memristive interfaces by performing experiments on the temperature dependence of the high resistance (HR) state under thermal cycling. Experimental results are well reproduced by numerical simulations based on thermally activated Ov diffusion processes and fundamental assumptions relying on a recent model proposed to explain bipolar resistive switching in manganite- based cells. The confident values obtained for activation energies and diffusion coefficient associated to Ov dynamics, constitute a validation test for both model predictions and Ov diffusion mechanisms in memristive interfaces.

قيم البحث

اقرأ أيضاً

We study the influence of oxygen vacancies on the formation of charged 180$^circ$ domain walls in ferroelectric BaTiO$_3$ using first principles calculations. We show that it is favorable for vacancies to assemble in crystallographic planes, and that such clustering is accompanied by the formation of a charged domain wall. The domain wall has negative bound charge, which compensates the nominal positive charge of the vacancies and leads to a vanishing density of free charge at the wall. This is in contrast to the positively charged domain walls, which are nearly completely compensated by free charge from the bulk. The results thus explain the experimentally observed difference in electronic conductivity of the two types of domain walls, as well as the generic prevalence of charged domain walls in ferroelectrics. Moreover, the explicit demonstration of vacancy driven domain wall formation implies that specific charged domain wall configurations may be realized by bottom-up design for use in domain wall based information processing.
72 - R. Lo Conte 2014
We demonstrate magnetization switching in out-of-plane magnetized TaCoFeBMgO nanowires by current pulse injection along the nanowires, both with and without a constant and uniform magnetic field collinear to the current direction. We deduce that an e ffective torque arising from spin-orbit effects in the multilayer drives the switching mechanism. While the generation of a component of the magnetization along the current direction is crucial for the switching to occur, we observe that even without a longitudinal field thermally generated magnetization fluctuations can lead to switching. Analysis using a generalized Neel-Brown model enables key parameters of the thermally induced spin-orbit torques switching process to be estimated, such as the attempt frequency and the effective energy barrier.
We report a memristive switching effect in the Pt/CuOx/Si/Pt devices prepared by rf sputtering technique at room temperature. Different from other Cu-based switching systems, the devices show a non-filamentary switching effect. A gradual electroformi ng marked by resistance increasing and capacitance decreasing is observed in current-voltage and capacitance characteristics. By the Auger electron spectroscopy analysis, a model based on Cu ion and oxygen vacancy drift, and thickness change of the SiOx layer at the CuOx/Si interface was proposed for the memristive switching and gradual electroforming, respectively. The present work would be meaningful for the preparation of forming-free and homogeneous memristive devices.
Ferroelectric memristors are intensively studied due to their potential implementation in data storage and processing devices. In this work we show that the memristive behavior of metal/ferroelectric oxide/metal devices relies on the competition of t wo effects: the modulation of metal/ferroelectric interface barriers by the switchable ferroelectric polarization and the electromigration of oxygen vacancies, with the depolarizing field playing a fundamental role in the latter. We simulate our experimental results with a phenomenological model that includes both effects and we reproduce several non-trivial features of the electrical response, including resistance relaxations observed after external poling. Besides providing insight into the underlying physics of these complex devices, our work suggests that it is possible to combine non-volatile and volatile resistive changes in single ferroelectric memristors, an issue that could be useful for the development of neuromorphic devices.
We demonstrate that it is possible to distinguish two conductance switching mechanisms in silver sulfide devices at room temperature. Experiments were performed using a Ag$_2$S thin film deposited on a wide Ag bottom electrode, which was contacted by the Pt tip of a scanning tunneling microscope. By applying a positive voltage on the silver electrode the conductance is seen to switch to a state having three orders of magnitude higher conductance, which is related to the formation of a conductive path inside the Ag$_2$S thin film. We argue this to be composed of a metallic silver nanowire accompanied by a modification of the surrounding lattice structure. Metallic silver nanowires decaying after applying a negative voltage allow observing conductance steps in the breaking traces characteristic for atomic-scale contacts, while the lattice structure deformation is revealed by gradual and continuously decreasing conductance traces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا