ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport evidence for the coexistence of the topological surface state and a two-dimensional electron gas in BiSbTe3 topological insulator

82   0   0.0 ( 0 )
 نشر من قبل Xiaolin Wang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological insulators (TIs) are new insulating materials with exotic surface states, where the motion of charge carriers is described by the Dirac equations and their spins are locked in a perpendicular direction to their momentum. Recent studies by angle-resolved photoemission spectroscopy have demonstrated that a conventional two-dimensional electron gas can coexist with the topological surface state due to the quantum confinement effect. The coexistence is expected to give rise to exotic transport properties, which, however, have not been explored so far. Here, we report a magneto-transport study on single crystals of the topological insulator BiSbTe3. Besides Shubnikov-de Haas oscillations and weak anti-localization (WAL) from the topological surface state, we also observed a crossover from the weak anti-localization to weak localization (WL) with increasing magnetic field, which is temperature dependent and exhibits two-dimensional features. The crossover is proposed to be the transport manifestation of the coexistence of the topological surface state and two-dimensional electron gas on the surface of TIs.

قيم البحث

اقرأ أيضاً

We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped sam ples and the general issue of topological protection remain controversial. In transition metal dichalcogenides valley-dependent electrical and optical phenomena continue to stimulate state-of-the-art experiments. In Weyl semimetals the properties of Fermi arcs are being actively investigated. A new field, expected to grow in the near future, focuses on the non-linear electrical and optical responses of topological materials, where fundamental questions are once more being asked about the intertwining roles of the Berry curvature and disorder scattering. In topological superconductors the quest for chiral superconductivity, Majorana fermions and topological quantum computing is continuing apace.
Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surfa ce states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.
A second-order topological insulator (SOTI) in $d$ spatial dimensions features topologically protected gapless states at its $(d-2)$-dimensional boundary at the intersection of two crystal faces, but is gapped otherwise. As a novel topological state, it has been attracting great interest, but it remains a challenge to identify a realistic SOTI material in two dimensions (2D). Here, based on combined first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized 2D material graphdiyne as the first realistic example of a 2D SOTI, with topologically protected 0D corner states. The role of crystalline symmetry, the robustness against symmetry-breaking, and the possible experimental characterization are discussed. Our results uncover a hidden topological character of graphdiyne and promote it as a concrete material platform for exploring the intriguing physics of higher-order topological phases.
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
We study nonlocal resistance in an H-shaped two-dimensional HgTe/CdTe quantum well consist of injector and detector, both of which can be tuned in the quantum spin Hall or metallic spin Hall regime. Because of strong spin-orbit interaction, there alw ays exist spin Hall effect and the nonlocal resistance in HgTe/CdTe quantum well. We find that when both detector and injector are in the quantum spin Hall regime, the nonlocal resistance is quantized at $0.25frac{h}{e^2}$, which is robust against weak disorder scattering and small magnetic field. While beyond this regime, the nonlocal resistance decreases rapidly and will be strongly suppressed by disorder and magnetic field. In the presence of strong magnetic field, the quantum spin Hall regime will be switched into the quantum Hall regime and the nonlocal resistance will disappear. The nonlocal signal and its various manifestation in different hybrid regimes originate from the special band structure of HgTe/CdTe quantum well, and can be considered as the fingerprint of the helical quantum spin Hall edge states in two-dimensional topological insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا