ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Deployment of Cognitive Relay as Underlay Systems

118   0   0.0 ( 0 )
 نشر من قبل Ankit Kaushik
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The objective of this paper is to extend the idea of Cognitive Relay (CR). CR, as a secondary user, follows an underlay paradigm to endorse secondary usage of the spectrum to the indoor devices. To seek a spatial opportunity, i.e., deciding its transmission over the primary user channels, CR models its deployment scenario and the movements of the primary receivers and indoor devices. Modeling is beneficial for theoretical analysis, however it is also important to ensure the performance of CR in a real scenario. We consider briefly, the challenges involved while deploying a hardware prototype of such a system.



قيم البحث

اقرأ أيضاً

We study the performance of cognitive Underlay System (US) that employ power control mechanism at the Secondary Transmitter (ST) from a deployment perspective. Existing baseline models considered for performance analysis either assume the knowledge o f involved channels at the ST or retrieve this information by means of a band manager or a feedback channel, however, such situations rarely exist in practice. Motivated by this fact, we propose a novel approach that incorporates estimation of the involved channels at the ST, in order to characterize the performance of the US in terms of interference power received at the primary receiver and throughput at the secondary receiver (or textit{secondary throughput}). Moreover, we apply an outage constraint that captures the impact of imperfect channel knowledge, particularly on the uncertain interference. Besides this, we employ a transmit power constraint at the ST to classify the operation of the US in terms of an interference-limited regime and a power-limited regime. In addition, we characterize the expressions of the uncertain interference and the secondary throughput for the case where the involved channels encounter Nakagami-$m$ fading. Finally, we investigate a fundamental tradeoff between the estimation time and the secondary throughput depicting an optimized performance of the US.
Understanding the performance of cognitive radio systems is of great interest. To perform dynamic spectrum access, different paradigms are conceptualized in the literature. Of these, Underlay System (US) has caught much attention in the recent past. According to US, a power control mechanism is employed at the Secondary Transmitter (ST) to constrain the interference at the Primary Receiver (PR) below a certain threshold. However, it requires the knowledge of channel towards PR at the ST. This knowledge can be obtained by estimating the received power, assuming a beacon or a pilot channel transmission by the PR. This estimation is never perfect, hence the induced error may distort the true performance of the US. Motivated by this fact, we propose a novel model that captures the effect of channel estimation errors on the performance of the system. More specifically, we characterize the performance of the US in terms of the estimation-throughput tradeoff. Furthermore, we determine the maximum achievable throughput for the secondary link. Based on numerical analysis, it is shown that the conventional model overestimates the performance of the US.
In this letter, we study the performance of cognitive Underlay Systems (USs) that employ power control mechanism at the Secondary Transmitter (ST). Existing baseline models considered for the performance analysis either assume the knowledge of involv ed channels at the ST or retrieve this information by means of a feedback channel, however, such situations hardly exist in practice. Motivated by this fact, we propose a novel approach that incorporates the estimation of the involved channels at the ST, in order to characterize the performance of USs under realistic scenarios. Moreover, we apply an outage constraint that captures the impact of imperfect channel knowledge, particularly on the interference power received at the primary receiver. Besides this, we employ a transmit power constraint at the ST to determine an operating regime for the US. Finally, we analyze an interesting tradeoff between the estimation time and the secondary throughput allowing an optimized performance of the US.
Blind Null Space Learning (BNSL) has recently been proposed for fast and accurate learning of the null-space associated with the channel matrix between a secondary transmitter and a primary receiver. In this paper we propose a channel tracking enhanc ement of the algorithm, namely the Blind Null Space Tracking (BNST) algorithm that allows transmission of information to the Secondary Receiver (SR) while simultaneously learning the null-space of the time-varying target channel. Specifically, the enhanced algorithm initially performs a BNSL sweep in order to acquire the null space. Then, it performs modified Jacobi rotations such that the induced interference to the primary receiver is kept lower than a given threshold $P_{Th}$ with probability $p$ while information is transmitted to the SR simultaneously. We present simulation results indicating that the proposed approach has strictly better performance over the BNSL algorithm for channels with independent Rayleigh fading with a small Doppler frequency.
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple prima ry user (PU) transceivers. In this protocol, the secondary nodes can harvest energy from the primary network (PN) while sharing the licensed spectrum of the PN. In order to assess the impact of different system parameters on the proposed network, we first derive an exact expression for the outage probability for the secondary network (SN) subject to three important power constraints: 1) the maximum transmit power at the secondary source (SS) and at the secondary relay (SR), 2) the peak interference power permitted at each PU receiver, and 3) the interference power from each PU transmitter to the SR and to the secondary destination (SD). To obtain practical design insights into the impact of different parameters on successful data transmission of the SN, we derive throughput expressions for both the delay-sensitive and the delay-tolerant transmission modes. We also derive asymptotic closed-form expressions for the outage probability and the delay-sensitive throughput and an asymptotic analytical expression for the delay-tolerant throughput as the number of PU transceivers goes to infinity. The results show that the outage probability improves when PU transmitters are located near SS and sufficiently far from SR and SD. Our results also show that when the number of PU transmitters is large, the detrimental effect of interference from PU transmitters outweighs the benefits of energy harvested from the PU transmitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا