ﻻ يوجد ملخص باللغة العربية
Blind Null Space Learning (BNSL) has recently been proposed for fast and accurate learning of the null-space associated with the channel matrix between a secondary transmitter and a primary receiver. In this paper we propose a channel tracking enhancement of the algorithm, namely the Blind Null Space Tracking (BNST) algorithm that allows transmission of information to the Secondary Receiver (SR) while simultaneously learning the null-space of the time-varying target channel. Specifically, the enhanced algorithm initially performs a BNSL sweep in order to acquire the null space. Then, it performs modified Jacobi rotations such that the induced interference to the primary receiver is kept lower than a given threshold $P_{Th}$ with probability $p$ while information is transmitted to the SR simultaneously. We present simulation results indicating that the proposed approach has strictly better performance over the BNSL algorithm for channels with independent Rayleigh fading with a small Doppler frequency.
Understanding the performance of cognitive radio systems is of great interest. To perform dynamic spectrum access, different paradigms are conceptualized in the literature. Of these, Underlay System (US) has caught much attention in the recent past.
In this letter, we study the performance of cognitive Underlay Systems (USs) that employ power control mechanism at the Secondary Transmitter (ST). Existing baseline models considered for the performance analysis either assume the knowledge of involv
This paper investigates a machine learning-based power allocation design for secure transmission in a cognitive radio (CR) network. In particular, a neural network (NN)-based approach is proposed to maximize the secrecy rate of the secondary receiver
We study the performance of cognitive Underlay System (US) that employ power control mechanism at the Secondary Transmitter (ST) from a deployment perspective. Existing baseline models considered for performance analysis either assume the knowledge o
The objective of this paper is to extend the idea of Cognitive Relay (CR). CR, as a secondary user, follows an underlay paradigm to endorse secondary usage of the spectrum to the indoor devices. To seek a spatial opportunity, i.e., deciding its trans