ترغب بنشر مسار تعليمي؟ اضغط هنا

Extraordinary luminous soft X-ray transient MAXI J0158-744 as an ignition of a nova on a very massive O-Ne white dwarf

88   0   0.0 ( 0 )
 نشر من قبل Mikio Morii
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the observation of an extraordinary luminous soft X-ray transient, MAXI J0158-744, by the Monitor of All-sky X-ray Image (MAXI) on 2011 November 11. This transient is characterized by a soft X-ray spectrum, a short duration (1.3 x 10^3 s < Delta T_d < 1.10 x 10^4 s), a very rapid rise (< 5.5 x 10^3 s), and a huge peak luminosity of 2 x 10^40 erg s^-1 in 0.7-7.0 keV band. With Swift observations and optical spectroscopy from the Small and Moderate Aperture Research Telescope System (SMARTS), we confirmed that the transient is a nova explosion, on a white dwarf in a binary with a Be star, located near the Small Magellanic Cloud. An extremely early turn-on of the super-soft X-ray source (SSS) phase (< 0.44 d), the short SSS phase duration of about one month, and a 0.92 keV neon emission line found in the third MAXI scan, 1296 s after the first detection, suggest that the explosion involves a small amount of ejecta and is produced on an unusually massive O-Ne white dwarf close to, or possibly over, the Chandrasekhar limit. We propose that the huge luminosity detected with MAXI was due to the fireball phase, a direct manifestation of the ignition of the thermonuclear runaway process in a nova explosion.

قيم البحث

اقرأ أيضاً

We investigate the mechanism to reproduce notable spectral features at the ignition phase of nova explosion observed for a super-Eddington X-ray transient source MAXI J0158$-$744 in the Small Magellanic Cloud. These are a strong Ne IX emission line a t 0.92 keV with a large equivalent width of $0.32^{+0.21}_{-0.11}$ keV and the absence of Ne X line at 1.02 keV. In this paper, we calculate the radiative transfer using a Monte Carlo code, taking into account the line blanketing effect due to transitions of N, O, Ne, Mg and Al ions in an accelerating wind emanating from a white dwarf with a structure based on a spherically symmetric stationary model. We found that the strong Ne IX line can be reproduced if the mass fraction of Ne is enhanced to $10^{-3}$ or more and that of O is reduced to $sim5times10^{-9}$ or less and that the absence of other lines including Ne X ions at higher energies can be also reproduced by the line blanketing effect. This enhancement of the Ne mass fraction indicates that the ejecta are enriched by Ne dredged up from the surface of the white dwarf composed of O, Ne, and Mg rather than C and O, as already pointed out in the previous work. We argue that the CNO cycle driving this nova explosion converted most of C and O into N and thus reduced the O mass fraction.
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., whic h are expected to be directly detected for the first time in late 2010s by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.
33 - John A. Tomsick 2016
IGR J14091-6108 is a Galactic X-ray source known to have an iron emission line, a hard X-ray spectrum, and an optical counterpart. Here, we report on X-ray observations of the source with XMM-Newton and NuSTAR as well as optical spectroscopy with ESO /VLT and NOAO/SOAR. In the X-rays, this provides data with much better statistical quality than the previous observations, and this is the first report of the optical spectrum. Timing analysis of the XMM data shows a very significant detection of 576.3+/-0.6 s period. The signal has a pulsed fraction of 30%+/-3% in the 0.3-12 keV range and shows a strong drop with energy. The optical spectra show strong emission lines with significant variability in the lines and continuum, indicating that they come from an irradiated accretion disk. Based on these measurements, we identify the source as a magnetic Cataclysmic Variable of Intermediate Polar (IP) type where the white dwarf spin period is 576.3 s. The X-ray spectrum is consistent with the continuum emission mechanism being due to thermal Bremsstrahlung, but partial covering absorption and reflection are also required. In addition, we use the IP mass (IPM) model, which suggests that the white dwarf in this system has a high mass, possibly approaching the Chandrasekhar limit.
We report on the spectral evolution of a new X-ray transient, MAXI J0556-332, observed by MAXI, Swift, and RXTE. The source was discovered on 2011 January 11 (MJD=55572) by MAXI Gas Slit Camera all-sky survey at (l,b)=(238.9deg, -25.2deg), relatively away from the Galactic plane. Swift/XRT follow-up observations identified it with a previously uncatalogued bright X-ray source and led to optical identification. For more than one year since its appearance, MAXI J0556-332 has been X-ray active, with a 2-10 keV intensity above 30 mCrab. The MAXI/GSC data revealed rapid X-ray brightening in the first five days, and a hard-to-soft transition in the meantime. For the following ~ 70 days, the 0.5-30 keV spectra, obtained by the Swift/XRT and the RXTE/PCA on an almost daily basis, show a gradual hardening, with large flux variability. These spectra are approximated by a cutoff power-law with a photon index of 0.4-1 and a high-energy exponential cutoff at 1.5-5 keV, throughout the initial 10 months where the spectral evolution is mainly represented by a change of the cutoff energy. To be more physical, the spectra are consistently explained by thermal emission from an accretion disk plus a Comptonized emission from a boundary layer around a neutron star. This supports the source identification as a neutron-star X-ray binary. The obtained spectral parameters agree with those of neutron-star X-ray binaries in the soft state, whose luminosity is higher than 1.8x10^37 erg s^-1. This suggests a source distance of >17 kpc.
Phase-resolved spectroscopy of the newly discovered X-ray transient MAXI J0556-332 has revealed the presence of narrow emission lines in the Bowen region that most likely arise on the surface of the mass donor star in this low mass X-ray binary. A pe riod search of the radial velocities of these lines provides two candidate orbital periods (16.43+/-0.12 and 9.754+/-0.048 hrs), which differ from any potential X-ray periods reported. Assuming that MAXI J0556-332 is a relatively high inclination system that harbors a precessing accretion disk in order to explain its X-ray properties, it is only possible to obtain a consistent set of system parameters for the longer period. These assumptions imply a mass ratio of q~0.45, a radial velocity semi-amplitude of the secondary of K_2~190 km/s and a compact object mass of the order of the canonical neutron star mass, making a black hole nature for MAXI J0556-332 unlikely. We also report the presence of strong N III emission lines in the spectrum, thereby inferring a high N/O abundance. Finally we note that the strength of all emission lines shows a continuing decay over the ~1 month of our observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا