ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar magnetism: empirical trends with age and rotation

152   0   0.0 ( 0 )
 نشر من قبل Aline Vidotto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Vidotto




اسأل ChatGPT حول البحث

We investigate how the observed large-scale surface magnetic fields of low-mass stars (~0.1 -- 2 Msun), reconstructed through Zeeman-Doppler imaging (ZDI), vary with age t, rotation and X-ray emission. Our sample consists of 104 magnetic maps of 73 stars, from accreting pre-main sequence to main-sequence objects (1 Myr < t < 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field <|Bv|> is related to age as $t^{-0.655 pm 0.045}$. This relation has a similar dependence to that identified by Skumanich (1972), used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method (magnetochronology). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star-disc interaction, rather than being driven by the dynamo.



قيم البحث

اقرأ أيضاً

109 - D. B. de Freitas 2020
In this first work attempts to analytically explain the effects on the magnetic braking index, $q$, caused by the evolution of stellar velocity in main-sequence stars, and estimated by de Freitas & De Medeiros (2013). We have found that the effect of $q$ is here a determining factor for understanding the delicate mechanisms that control the spin-down of stars as a function of the mass of stars. We note that our models predict that the calculated ages are distinct from gyrochronology ages. Indeed, the gyro-ages are measured considering only the canonical value of the Skumanich relation ($q$=3). As a result, we find that the age of stars can be well-determined when $q$ is free parameter. We also verified that for rotation periods less than $sim$ 5 days (i.e., fast rotators) there is a strong discrepancy among the different indexes $q$. In addition, the ages measured by gyrochronology model can be underestimated according to mass range selected. In conclusion, we suggest that the generalized gyro-ages by magnetic braking index can be an interesting way to better understand the idea of rotation as a clock.
We present a new age-dating technique that combines gyrochronology with isochrone fitting to infer ages for FGKM main-sequence and subgiant field stars. Gyrochronology and isochrone fitting are each capable of providing relatively precise ages for fi eld stars in certain areas of the Hertzsprung-Russell diagram: gyrochronology works optimally for cool main-sequence stars, and isochrone fitting can provide precise ages for stars near the main-sequence turnoff. Combined, these two age-dating techniques can provide precise and accurate ages for a broader range of stellar masses and evolutionary stages than either method used in isolation. We demonstrate that the position of a star on the Hertzsprung- Russell or color-magnitude diagram can be combined with its rotation period to infer a precise age via both isochrone fitting and gyrochronology simultaneously. We show that incorporating rotation periods with 5% uncertainties into stellar evolution models improves age precision for FGK stars on the main sequence, and can, on average, provide age estimates up to three times more precise than isochrone fitting alone. In addition, we provide a new gyrochronology relation, calibrated to the Praesepe cluster and the Sun, that includes a variance model to capture the rotational behavior of stars whose rotation periods do not lengthen with the square-root of time, and parts of the Hertzsprung-Russell diagram where gyrochronology has not been calibrated. This publication is accompanied by an open source Python package, stardate, for inferring the ages of main-sequence and subgiant FGKM stars from rotation periods, spectroscopic parameters and/or apparent magnitudes and parallaxes.
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measur ed asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main- sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function (ACF) of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.
The mass and age of substellar objects are degenerate parameters leaving the evolutionary state of brown dwarfs ambiguous without additional information. Theoretical models are normally used to help distinguish between old, massive brown dwarfs and y oung, low mass brown dwarfs but these models have yet to be properly calibrated. We have carried out an infrared high-contrast imaging program with the goal of detecting substellar objects as companions to nearby stars to help break degeneracies in inferred physical properties such as mass, age, and composition. Rather than using imaging observations alone, our targets are pre-selected based on the existence of dynamical accelerations informed from years of stellar radial velocity (RV) measurements. In this paper, we present the discovery of a rare benchmark brown dwarf orbiting the nearby ($d=18.69pm0.19$ pc), solar-type (G9V) star HD 4747 ([Fe/H]=$-0.22pm0.04$) with a projected separation of only $rho=11.3pm0.2$ AU ($theta approx$ 0.6). Precise Doppler measurements taken over 18 years reveal the companions orbit and allow us to place strong constraints on its mass using dynamics ($m sin(i) = 55.3pm1.9M_J$). Relative photometry ($Delta K_s=9.05pm0.14$, $M_{K_s}=13.00pm0.14$, $K_s - L = 1.34pm0.46$) indicates that HD 4747 B is most-likely a late-type L-dwarf and, if near the L/T transition, an intriguing source for studying cloud physics, variability, and polarization. We estimate a model-dependent mass of $m=72^{+3}_{-13}M_J$ for an age of $3.3^{+2.3}_{-1.9}$ Gyr based on gyrochronology. Combining astrometric measurements with RV data, we calculate the companion dynamical mass ($m=60.2pm3.3M_J$) and orbit ($e=0.740pm0.002$) directly. As a new mass, age, and metallicity benchmark, HD 4747 B will serve as a laboratory for precision astrophysics to test theoretical models that describe the emergent radiation of brown dwarfs.
Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for cha racterizing the generation of magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parametrized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large scale magnetic field is not trivial. An alternative -broadly used in solar physics- is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5Rsun. However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down time scales made using our technique, and compare them to observational requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا