ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards precise stellar ages: combining isochrone fitting with empirical gyrochronology

324   0   0.0 ( 0 )
 نشر من قبل Ruth Angus
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new age-dating technique that combines gyrochronology with isochrone fitting to infer ages for FGKM main-sequence and subgiant field stars. Gyrochronology and isochrone fitting are each capable of providing relatively precise ages for field stars in certain areas of the Hertzsprung-Russell diagram: gyrochronology works optimally for cool main-sequence stars, and isochrone fitting can provide precise ages for stars near the main-sequence turnoff. Combined, these two age-dating techniques can provide precise and accurate ages for a broader range of stellar masses and evolutionary stages than either method used in isolation. We demonstrate that the position of a star on the Hertzsprung- Russell or color-magnitude diagram can be combined with its rotation period to infer a precise age via both isochrone fitting and gyrochronology simultaneously. We show that incorporating rotation periods with 5% uncertainties into stellar evolution models improves age precision for FGK stars on the main sequence, and can, on average, provide age estimates up to three times more precise than isochrone fitting alone. In addition, we provide a new gyrochronology relation, calibrated to the Praesepe cluster and the Sun, that includes a variance model to capture the rotational behavior of stars whose rotation periods do not lengthen with the square-root of time, and parts of the Hertzsprung-Russell diagram where gyrochronology has not been calibrated. This publication is accompanied by an open source Python package, stardate, for inferring the ages of main-sequence and subgiant FGKM stars from rotation periods, spectroscopic parameters and/or apparent magnitudes and parallaxes.



قيم البحث

اقرأ أيضاً

113 - D. Valls-Gabaud 2016
Stellar evolution theory has been extraordinarily successful at explaining the different phases under which stars form, evolve and die. While the strongest constraints have traditionally come from binary stars, the advent of asteroseismology is bring ing unique measures in well-characterised stars. For stellar populations in general, however, only photometric measures are usually available, and the comparison with the predictions of stellar evolution theory have mostly been qualitative. For instance, the geometrical shapes of isochrones have been used to infer ages of coeval populations, but without any proper statistical basis. In this chapter we provide a pedagogical review on a Bayesian formalism to make quantitative inferences on the properties of single, binary and small ensembles of stars, including unresolved populations. As an example, we show how stellar evolution theory can be used in a rigorous way as a prior information to measure the ages of stars between the ZAMS and the Helium flash, and their uncertainties, using photometric data only.
216 - D. J. A. Brown 2014
Using a sample of 68 planet-hosting stars I carry out a comparison of isochrone fitting and gyrochronology to investigate whether tidal interactions between the stars and their planets are leading to underestimated ages using the latter method. I fin d a slight tendency for isochrones to produce older age estimates but find no correlation with tidal time-scale, although for some individual systems the effect of tides might be leading to more rapid rotation than expected from the stars isochronal age, and therefore an underestimated gyrochronology age. By comparing to planetary systems in stellar clusters, I also find that in some cases isochrone fitting can overestimate the age of the star. The evidence for any bias on a sample-wide level is inconclusive. I also consider the subset of my sample for which the sky-projected alignment angle between the stellar rotation axis and the planets orbital axis has been measured, finding similar patterns to those identified in the full sample. However, small sample sizes for both the misaligned and aligned systems prevent strong conclusions from being drawn.
152 - A. A. Vidotto 2014
We investigate how the observed large-scale surface magnetic fields of low-mass stars (~0.1 -- 2 Msun), reconstructed through Zeeman-Doppler imaging (ZDI), vary with age t, rotation and X-ray emission. Our sample consists of 104 magnetic maps of 73 s tars, from accreting pre-main sequence to main-sequence objects (1 Myr < t < 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field <|Bv|> is related to age as $t^{-0.655 pm 0.045}$. This relation has a similar dependence to that identified by Skumanich (1972), used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method (magnetochronology). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star-disc interaction, rather than being driven by the dynamo.
Context. Ruprecht 147 is the oldest (2.5 Gyr) open cluster in the solar vicinity (< 300 pc), making it an important target for stellar evolution studies and exoplanet searches. Aims. Derive a census of members and the luminosity, mass, and spatial di stributions of the cluster. Methods. We use an astro-photometric data set including all available information from the literature together with our own observations. We process the data with an updated version of an existent membership selection methodology. Results. We identify 259 high-probability candidate members, including 58 previously unreported. All these candidates cover the luminosity interval between G > 6 mag to i< 21 mag. The cluster luminosity and mass distributions are derived with an unprecedented level of details allowing us to recognize, among other features, the Wielen dip. The mass distribution in the low-mass regime drops sharply at 0.4 $M_{odot}$ even though our data are sensitive to stellar masses down to 0.1 $M_{odot}$, suggesting that most very-low-mass members left the cluster as the result of its dynamical evolution. In addition, the cluster is highly elongated (ellipticity $sim$ 0.5) towards the galactic plane, and mass segregated. Conclusions. Our combined Gaia+DANCe data set allows us to obtain an extended list of cluster candidate members, and to derive luminosity, mass and projected spatial distributions in the oldest open cluster of the solar vicinity.
Measurement of the substellar initial mass function (IMF) in very young clusters is hampered by the possibility of the age spread of cluster members. This is particularly serious for candidate planetary mass objects (PMOs), which have a very similar location to older and more massive brown dwarfs on the Hertzsprung-Russell Diagram (HRD). This degeneracy can be lifted by the measurement of gravity-sensitive spectral features. To this end we have obtained medium resolution (R~5000) Near-infrared Integral Field Spectrometer (NIFS) K band spectra of a sample of late M- / early L-type dwarfs. The sample comprises old field dwarfs and very young brown dwarfs in the Taurus association and in the Sigma Orionis cluster. We demonstrate a positive correlation between the strengths of the 2.21micron NaI doublet and the objects ages. We demonstrate a further correlation between these objects ages and the shape of their K band spectra. We have quantified this correlation in the form of a new index, the H2(K) index. This index appears to be more gravity-sensitive than the NaI doublet and has the advantage that it can be computed for spectra where gravity-sensitive spectral lines are unresolved, while it is also more sensitive to surface gravity at very young ages (<10 Myr) than the triangular H band peak. Both correlations differentiate young objects from field dwarfs, while the H2(K) index can distinguish, at least statistically, populations of ~1 Myr objects from populations of ~10 Myr objects. We applied the H2(K) index to NIFS data for one Orion nebula cluster (ONC) PMO and to previously published low resolution spectra for several other ONC PMOs where the 2.21micron NaI doublet was unresolved and concluded that the average age of the PMOs is ~1 Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا