ﻻ يوجد ملخص باللغة العربية
The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.
A transition rate model of cargo transport by $N$ molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and TADs (topologically-associating domains), to contact domains stabilized by cohesin and CTCF. However, molecul
Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin p
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic
In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to th