ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Point Defects on the Optical and Transport Properties of MoS2 and WS2

100   0   0.0 ( 0 )
 نشر من قبل Rafael Roldan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Imperfections in the crystal structure, such as point defects, can strongly modify the optical and transport properties of materials. Here, we study the effect of point defects on the optical and DC conductivities of single layers of semiconducting transition metal dichalcogenides with the form $M$S$_2$, where $M$=Mo or W. The electronic structure is considered within a six bands tight-binding model, which accounts for the relevant combination of $d$ orbitals of the metal $M$ and $p$ orbitals of the chalcogen $S$. We use the Kubo formula for the calculation of the conductivity in samples with different distributions of disorder. We find that $M$ and/or S defects create mid-gap states that localize charge carriers around the defects and which modify the optical and transport properties of the material, in agreement with recent experiments. Furthermore, our results indicate a much higher mobility for $p$-doped WS$_2$ in comparison to MoS$_2$.

قيم البحث

اقرأ أيضاً

91 - Hao Lee , S. Deshmukh , Jing Wen 2019
Transition metal dichalcogenides (TMDs) are layered semiconducting van der Waal crystals and promising materials for a wide range of electronic and optoelectronic devices. Realizing practical electrical and optoelectronic device applications requires a connection between a metal junction and a TMD semiconductor. Hence, a complete understanding of electronic band alignments and the potential barrier heights governing the transport through a metal-TMD-metal junction is critical. But, there is a knowledge gap; it is not clear how the energy bands of a TMD align while in contact with a metal as a function of the number of layers. In pursuit of removing this knowledge gap, we have performed conductive atomic force microscopy (CAFM) of few layered (1-5) MoS2 immobilized on ultra-flat conducting Au surfaces (root mean square (RMS) surface roughness <0.2 nm) and indium tin oxide (ITO) substrate (RMS surface roughness <0.7 nm) forming a vertical metal (conductive-AFM tip)-semiconductor-metal device. We have observed that the current increases as the number of layers increases up to 5 layers. By applying Fowler-Nordheim tunneling theory, we have determined the barrier heights for different layers and observed that the barrier height decreases as the number of layers increases. Using density functional theory (DFT) calculation, we successfully demonstrated that the barrier height decreases as the layer number increases. By illuminating the TMDs on a transparent ultra-flat conducting ITO substrate, we observed a reduction in current when compared to the current measured in the dark, hence demonstrating negative photoconductivity. Our study provides a fundamental understanding of the local electronic and optoelectronic behaviors of TMD-metal junction, and may pave an avenue toward developing nanoscale electronic devices with tailored layer-dependent transport properties.
Coherent optical dressing of quantum materials offers technological advantages to control their electronic properties, such as the electronic valley degree of freedom in monolayer transition metal dichalcogenides (TMDs). Here, we observe a new type o f optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We found that such helical optical driving not only induces an exciton energy downshift at the excitation valley, but also causes an anomalous energy upshift at the opposite valley, which is normally forbidden by the exciton selection rules but now made accessible through the intervalley biexcitons. These findings reveal the critical, but hitherto neglected, role of biexcitons to couple the two seemingly independent valleys, and to enhance the optical control in valleytronics.
Breaking space-time symmetries in two-dimensional crystals (2D) can dramatically influence their macroscopic electronic properties. Monolayer transition-metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal symmetry. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley-specific band engineering and offer additional control in valleytronic applications. While applying a magnetic field should in principle accomplish this task, experiments to date have observed no valley-selective energy level shifts in fields accessible in the laboratory. Here we show the first direct evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying intense circularly polarized light, which breaks time-reversal symmetry, we demonstrate that the exciton level in each valley can be selectively tuned by as much as 18 meV via the optical Stark effect. These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological phases in 2D TMDs.
289 - P. Blake , R. Yang , S. V. Morozov 2009
There is an increasing amount of literature concerning electronic properties of graphene close to the neutrality point. Many experiments continue using the two-probe geometry or invasive contacts or do not control samples macroscopic homogeneity. We believe that it is helpful to point out some problems related to such measurements. By using experimental examples, we illustrate that the charge inhomogeneity induced by spurious chemical doping or metal contacts can lead to large systematic errors in assessing graphenes transport properties and, in particular, its minimal conductivity. The problems are most severe in the case of two-probe measurements where the contact resistance is found to strongly vary as a function of gate voltage.
122 - Rui Mao , Byoung Don Kong , 2014
Thermal transport properties at the metal/MoS2 interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS2 and Ru( 0001)/MoS2, physisorbed Au(111)/MoS2, as well as Pd(111)/MoS2 with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS2 and metal/graphene systems suggests that metal/MoS2 is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origin of the observed large thermal resistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا