ﻻ يوجد ملخص باللغة العربية
Several results on constrained spline smoothing are obtained. In particular, we establish a general result, showing how one can constructively smooth any monotone or convex piecewise polynomial function (ppf) (or any $q$-monotone ppf, $qgeq 3$, with one additional degree of smoothness) to be of minimal defect while keeping it close to the original function in the ${mathbb L}_p$-(quasi)norm. It is well known that approximating a function by ppfs of minimal defect (splines) avoids introduction of artifacts which may be unrelated to the original function, thus it is always preferable. On the other hand, it is usually easier to construct constrained ppfs with as little requirements on smoothness as possible. Our results allow to obtain shape-preserving splines of minimal defect with equidistant or Chebyshev knots. The validity of the corresponding Jackson-type estimates for shape-preserving spline approximation is summarized, in particular we show, that the ${mathbb L}_p$-estimates, $pge1$, can be immediately derived from the ${mathbb L}_infty$-estimates.
Rotational smoothing is a phenomenon consisting in a gain of regularity by means of averaging over rotations. This phenomenon is present in operators that regularize only in certain directions, in contrast to operators regularizing in all directions.
The marriage of recurrent neural networks and neural ordinary differential networks (ODE-RNN) is effective in modeling irregularly-observed sequences. While ODE produces the smooth hidden states between observation intervals, the RNN will trigger a h
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh D in R^k, we study the subdivision D obtained by subdividing a maximal cell of D. We give sufficient conditions for the module of splines on D to
We introduce the new class of planar Pythagorean-Hodograph (PH) B-Spline curves. They can be seen as a generalization of the well-known class of planar Pythagorean-Hodograph (PH) Bezier curves, presented by R. Farouki and T. Sakkalis in 1990, includi
We establish new results concerning the existence of extremisers for a broad class of smoothing estimates of the form $|psi(| abla|) exp(itphi(| abla|)f |_{L^2(w)} leq C|f|_{L^2}$, where the weight $w$ is radial and depends only on the spatial variab