ﻻ يوجد ملخص باللغة العربية
In the majority of the analytical verifications of the conjecture that the Generalised Gibbs Ensemble describes the large time asymptotics of local observables in quantum quench problems, both the post-quench and the pre-quench Hamiltonians are essentially noninteracting. We test this conjecture studying the field correlations in the more general case of an arbitrary pre-quench Hamiltonian, while keeping the post-quench one noninteracting. We first show that in the previously studied special case of a noninteracting pre-quench Hamiltonian, the validity of the conjecture is a consequence of Wicks theorem. We then show that it is also valid in the general case of an arbitrary interacting pre-quench Hamiltonian, but this time as a consequence of the cluster decomposition property of the initial state, which is a fundamental principle for generic physical states. For arbitrary initial states that do not satisfy the cluster decomposition property, the above conjecture is not generally true. As a byproduct of our investigation we obtain an analytical derivation of earlier numerical results for the large time evolution of correlations after a quantum quench of the interaction in the Lieb-Liniger model from a nonzero value to zero.
Ground states of interacting QFTs are non-gaussian states, i.e. their connected n-point correlation functions do not vanish for n>2, in contrast to the free QFT case. We show that when the ground state of an interacting QFT evolves under a free massi
We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical ph
We describe several results concerning global quantum quenches from states with short-range correlations to quantum critical points whose low-energy properties are described by a 1+1-dimensional conformal field theory (CFT), extending the work of Cal
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenche