ﻻ يوجد ملخص باللغة العربية
We describe several results concerning global quantum quenches from states with short-range correlations to quantum critical points whose low-energy properties are described by a 1+1-dimensional conformal field theory (CFT), extending the work of Calabrese and Cardy (2006): (a) for the special class of initial states discussed in that paper we show that, once a finite region falls inside the horizon, its reduced density matrix is exponentially close in $L_2$ norm to that of a thermal Gibbs state; (b) small deformations of this initial state in general lead to a (non-Abelian) generalized Gibbs distribution (GGE) with, however, the possibility of parafermionic conserved charges; (c) small deformations of the CFT, corresponding to curvature of the dispersion relation and (non-integrable) left-right scattering, lead to a dependence of the speed of propagation on the initial state, as well as diffusive broadening of the horizon.
In a recent letter, J. Cardy, Phys. Rev. Lett. textbf{112}, 220401 (2014), the author made a very interesting observation that complete revivals of quantum states after quantum quench can happen in a period which is a fraction of the system size. Thi
We perform a numerical study of a spin-1/2 model with $mathbb{Z}_2 times mathbb{Z}_2$ symmetry in one dimension which demonstrates an interesting similarity to the physics of two-dimensional deconfined quantum critical points (DQCP). Specifically, we
We study in general the time-evolution of correlation functions in a extended quantum system after the quench of a parameter in the hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical ph
Ferromagnetism in one dimension is a novel observation which has been reported in a recent work (P. Gambardella et.al., Nature {bf 416}, 301 (2002)), anisotropies are responsibles in that relevant effect. In the present work, another approach is used
We study the unitary time evolution of the order parameter of a quantum system after a sudden quench in the parameter driving the transition. By mapping the dynamics onto the imaginary time path-integral in a film geometry we derive the full mean-fie