ﻻ يوجد ملخص باللغة العربية
The magnetization field and temperature dependences in the paramagnetic phase of Mn1-xFexSi solid solutions with x<0.3 are investigated in the range B<5 T and T<60 K. It is found that field dependences of the magnetization M(B,T=const) exhibit scaling behavior of the form Bpartial M/partial B-M=F(B/(T-Ts)), where Ts denotes an empirically determined temperature of the transition into the magnetic phase with fluctuation driven short-range magnetic order and F(c{hi}) is a universal scaling function for given composition. The scaling relation allowed concluding that the magnetization in the paramagnetic phase of Mn1-xFexSi is represented by the sum of two terms. The first term is saturated by the scaling variable c{hi}=B/(T-Ts), whereas the second is linearly dependent on the magnetic field. A simple analytical formula describing the magnetization is derived and applied to estimates of the parameters characterizing localized magnetic moments in the studied system. The obtained data may be qualitatively interpreted assuming magnetic inhomogeneity of the paramagnetic phase on the nanoscale.
Torque and magnetization measurements in magnetic fields $H$ up to 14 T were performed on CeCoIn$_5$ single crystals. The amplitude of the paramagnetic torque shows an $H^{2.3}$ dependence in the mixed state and an $H^{2}$ dependence in the normal st
We study the effects of 10% Cr substitution in Mn sites of Bi0.5Sr0.5MnO3 on the antiferromagnetic (AFM) (TN ~ 110 K) transition using structural, magnetic and electron paramagnetic resonance (EPR) techniques. Field cooled (FC) and zero field cooled
Magnetization and torque measurements were performed on CeCoIn$_5$ single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The par
The insulating pyrochlore compound Nd2Sn2O7 has been shown to undergo a second order magnetic phase transition at Tc ~ 0.91 K to a noncoplanar all-in--all-out magnetic structure of the Nd3+ magnetic moments. An anomalously slow paramagnetic spin dyna
We report on the discovery of a novel triangular phase regime in the system La1-xSrxMnO3 by means of electron spin resonance and magnetic susceptibility measurements. This phase is characterized by the coexistence of ferromagnetic entities within the