ﻻ يوجد ملخص باللغة العربية
We study the effects of 10% Cr substitution in Mn sites of Bi0.5Sr0.5MnO3 on the antiferromagnetic (AFM) (TN ~ 110 K) transition using structural, magnetic and electron paramagnetic resonance (EPR) techniques. Field cooled (FC) and zero field cooled (ZFC) magnetization measurements done from 400 K down to 4 K show that the compound is in the paramagnetic (PM) phase till 50 K where it undergoes a transition to a short range ferromagnetic phase (FM). Electron paramagnetic resonance measurements performed in the temperature range 300 K till 80 K conform with the magnetization measurements as symmetric signals are observed owing to the paramagnetic phase. Below 80 K, signals become asymmetric. Electron paramagnetic resonance intensity peaks at ~ 110 K, the decreasing intensity below this temperature confirming the presence of antiferromagnetism. We conclude that below 50 K the magnetization and EPR results are consistent with a cluster glass phase of BSMCO, where ferromagnetic clusters coexist with an antiferromagnetic background.
We study and compare magnetic and electron paramagnetic resonance behaviors of bulk and nanoparticles of Nd(1-x)CaxMnO3 in hole doped (x = 0.4;NCMOH) and electron doped (x = 0.6;NCMOE) samples. NCMOH in bulk form shows a complex temperature dependenc
Nd_0.67Sr_0.33MnO_3 nanoparticles with the grain size of about 30 nm are prepared by sol-gel method.These nanopowders are annealed at four different temperatures viz. 800 oC, 900 oC, 1000 oC and 1100 oC to study the effect of particle size on magneti
Torque and magnetization measurements in magnetic fields $H$ up to 14 T were performed on CeCoIn$_5$ single crystals. The amplitude of the paramagnetic torque shows an $H^{2.3}$ dependence in the mixed state and an $H^{2}$ dependence in the normal st
Magnetization and torque measurements were performed on CeCoIn$_5$ single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The par
BaCuSi$_2$O$_6$, a $S=1/2$ quantum antiferromagnet with a double-layer structure of Cu$^{2+}$ ions in a distorted planar-rectangular coordination and with a dimerized spin singlet ground state, is studied by means of the electron paramagnetic resonan