ﻻ يوجد ملخص باللغة العربية
We consider the energetics of a superconducting double dot, comprising two superconducting islands coupled in series via a Josephson junction. The periodicity of the stability diagram is governed by the competition between the charging energy and the superconducting gap, and the stability of each charge state depends upon its parity. We also find that, at finite temperatures, thermodynamic considerations have a significant effect on the stability diagram.
We design and investigate an experimental system capable of entering an electron transport blockade regime in which a spin-triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet a d
The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., a system with a discrete energy spectrum. Here, we sh
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap
Sub-gap transport properties of a quantum dot (QD) coupled to two superconducting and one metallic leads are studied theoretically, solving the time-dependent equation of motion by the Laplace transform technique. We focus on time-dependent response
The latest concepts for quantum computing and data storage envision to address and manipulate single spins. A limitation for single atoms or molecules in contact to a metal surface are the short lifetime of excited spin states, typically picoseconds,