ترغب بنشر مسار تعليمي؟ اضغط هنا

$L^{p}-L^{q}$ theory for holomorphic functions of perturbed first order Dirac operators

117   0   0.0 ( 0 )
 نشر من قبل Pascal Auscher
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of the article is to prove $L^{p}-L^{q}$ off-diagonal estimates and $L^{p}-L^{q}$ boundedness for operators in the functional calculus of certain perturbed first order differential operators of Dirac type for with $ple q$ in a certain range of exponents. We describe the $L^{p}-L^{q}$ off-diagonal estimates and the $L^{p}-L^{q}$ boundedness in terms of the decay properties of the related holomorphic functions and give a necessary condition for $L^{p}-L^{q}$ boundedness. Applications to Hardy-Littlewood-Sobolev estimates for fractional operators will be given.



قيم البحث

اقرأ أيضاً

94 - P. Deift , X. Zhou 2002
The authors use steepest descent ideas to obtain a priori $L^p$ estimates for solutions of Riemann-Hilbert Problems. Such estimates play a crucial role, in particular, in analyzing the long-time behavior of solutions of the perturbed nonlinear Schrodinger equation on the line.
107 - Jan Rozendaal , Mark Veraar 2017
We study polynomial and exponential stability for $C_{0}$-semigroups using the recently developed theory of operator-valued $(L^{p},L^{q})$ Fourier multipliers. We characterize polynomial decay of orbits of a $C_{0}$-semigroup in terms of the $(L^{p} ,L^{q})$ Fourier multiplier properties of its resolvent. Using this characterization we derive new polynomial decay rates which depend on the geometry of the underlying space. We do not assume that the semigroup is uniformly bounded, our results depend only on spectral properties of the generator. As a corollary of our work on polynomial stability we reprove and unify various existing results on exponential stability, and we also obtain a new theorem on exponential stability for positive semigroups.
We show that, under general conditions, the operator $bigl (- abla cdot mu abla +1bigr)^{1/2}$ with mixed boundary conditions provides a topological isomorphism between $W^{1,p}_D(Omega)$ and $L^p(Omega)$, for $p in {]1,2[}$ if one presupposes that this isomorphism holds true for $p=2$. The domain $Omega$ is assumed to be bounded, the Dirichlet part $D$ of the boundary has to satisfy the well-known Ahlfors-David condition, whilst for the points from $overline {partial Omega setminus D}$ the existence of bi-Lipschitzian boundary charts is required.
88 - Tomohiro Nishiyama 2019
For a measurable function on a set which has a finite measure, an inequality holds between two Lp-norms. In this paper, we show similar inequalities for the Euclidean space and the Lebesgue measure by using a q-moment which is a moment of an escort d istribution. As applications of these inequalities, we first derive upper bounds for the Renyi and the Tsallis entropies with given q-moment and derive an inequality between two Renyi entropies. Second, we derive an upper bound for the probability of a subset in the Euclidean space with given Lp-norm on the same set.
The main purpose of this paper is to prove Hormanders $L^p$-$L^q$ boundedness of Fourier multipliers on commutative hypergroups. We carry out this objective by establishing Paley inequality and Hausdorff-Young-Paley inequality for commutative hypergr oups. We show the $L^p$-$L^q$ boundedness of the spectral multipliers for the generalised radial Laplacian by examining our results on Ch{e}bli-Trim`{e}che hypergroups. As a consequence, we obtain embedding theorems and time asymptotics for the $L^p$-$L^q$ norms of the heat kernel for generalised radial Laplacian. Finally, we present applications of the obtained results to study the well-posedness of nonlinear partial differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا