ترغب بنشر مسار تعليمي؟ اضغط هنا

A priori $L^p$ estimates for solutions of Riemann-Hilbert Problems

95   0   0.0 ( 0 )
 نشر من قبل Percy Deift
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The authors use steepest descent ideas to obtain a priori $L^p$ estimates for solutions of Riemann-Hilbert Problems. Such estimates play a crucial role, in particular, in analyzing the long-time behavior of solutions of the perturbed nonlinear Schrodinger equation on the line.



قيم البحث

اقرأ أيضاً

149 - Pascal Auscher 2014
We prove a number of textit{a priori} estimates for weak solutions of elliptic equations or systems with vertically independent coefficients in the upper-half space. These estimates are designed towards applications to boundary value problems of Diri chlet and Neumann type in various topologies. We work in classes of solutions which include the energy solutions. For those solutions, we use a description using the first order systems satisfied by their conormal gradients and the theory of Hardy spaces associated with such systems but the method also allows us to design solutions which are not necessarily energy solutions. We obtain precise comparisons between square functions, non-tangential maximal functions and norms of boundary trace. The main thesis is that the range of exponents for such results is related to when those Hardy spaces (which could be abstract spaces) are identified to concrete spaces of tempered distributions. We consider some adapted non-tangential sharp functions and prove comparisons with square functions. We obtain boundedness results for layer potentials, boundary behavior, in particular strong limits, which is new, and jump relations. One application is an extrapolation for solvability a la {v{S}}ne{ui}berg. Another one is stability of solvability in perturbing the coefficients in $L^infty$ without further assumptions. We stress that our results do not require De Giorgi-Nash assumptions, and we improve the available ones when we do so.
In limited data computerized tomography, the 2D or 3D problem can be reduced to a family of 1D problems using the differentiated backprojection (DBP) method. Each 1D problem consists of recovering a compactly supported function $f in L^2(mathcal F)$, where $mathcal F$ is a finite interval, from its partial Hilbert transform data. When the Hilbert transform is measured on a finite interval $mathcal G$ that only overlaps but does not cover $mathcal F$ this inversion problem is known to be severely ill-posed [1]. In this paper, we study the reconstruction of $f$ restricted to the overlap region $mathcal F cap mathcal G$. We show that with this restriction and by assuming prior knowledge on the $L^2$ norm or on the variation of $f$, better stability with Holder continuity (typical for mildly ill-posed problems) can be obtained.
279 - Xiaoqiang Sun , Jiguang Bao 2021
In this paper, we apply blow-up analysis and Liouville type theorems to study pointwise a priori estimates for some quasilinear equations with p-Laplace operator. We first obtain pointwise interior estimates for the gradient of p-harmonic function, i .e., the solution of $Delta_{p}u=0, xinOmega$, which extends the well-established results of the interior estimates of the gradient of harmonic function. We then get singularity and decay estimates of the sign changing solution of Lane-Emden-Fowler type p-Laplace equation $-Delta_{p}u=|u|^{lambda-1}u, xinOmega$, which are then generalized for the equation with general right hand term $f(x,u)$, under some asymptotic conditions of $f$. Lastly, we get pointwise estimates for higher order derivatives of the solution of $-Delta u=u^{lambda},xinOmega$, the case of $p=2$ for p-Laplace equation.
The aim of the article is to prove $L^{p}-L^{q}$ off-diagonal estimates and $L^{p}-L^{q}$ boundedness for operators in the functional calculus of certain perturbed first order differential operators of Dirac type for with $ple q$ in a certain range o f exponents. We describe the $L^{p}-L^{q}$ off-diagonal estimates and the $L^{p}-L^{q}$ boundedness in terms of the decay properties of the related holomorphic functions and give a necessary condition for $L^{p}-L^{q}$ boundedness. Applications to Hardy-Littlewood-Sobolev estimates for fractional operators will be given.
117 - Mateusz Piorkowski 2019
We study whether in the setting of the Deift-Zhou nonlinear steepest descent method one can avoid solving local parametrix problems explicitly, while still obtaining asymptotic results. We show that this can be done, provided an a priori estimate for the exact solution of the Riemann-Hilbert problem is known. This enables us to derive asymptotic results for orthogonal polynomials on $[-1,1]$ with a new class of weight functions. In these cases, the weight functions are too badly behaved to allow a reformulation of a local parametrix problem to a global one with constant jump matrices. Possible implications for edge universality in random matrix theory are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا