ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: processing of the FLAMES-UVES spectra

122   0   0.0 ( 0 )
 نشر من قبل Giuseppe Germano Sacco
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 10^5 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium resolution (R~20,000) GIRAFFE spectrograph and the high resolution (R~47,000) UVES spectrograph. In this paper, we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, performs automatically sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is sigma~0.4 km s^-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s^-1) and to the radial velocities of the standard stars (~0.5 kms^-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the setups and instruments used for the survey will be established.



قيم البحث

اقرأ أيضاً

The Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. UVES high-resolution spectra are being collected for about 5000 FGK-type stars. These UVES spectra are analyzed in parallel by several stat e-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO 2nd internal release and will be part of its 1st public release of advanced data products. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. A set of open and globular clusters is used to evaluate the physical soundness of the results. Each methodology is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.
The Gaia-ESO survey (GES) is now in its fifth and last year of observations, and has already produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysic al calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of: (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars, and with a large range of metallicities, as well as including fast rotators, emission line objects, stars affected by veiling and so on; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4 - the fourth internal GES data release, that will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
101 - C. C. Worley 2020
The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such as Kepler, K2 and CoRoT. Combining the measurements from spectroscopy and asteroseismology allows us to attain greater accuracy with regard to the stellar parameters needed to characterise the stellar populations of the Milky Way. The aim of this Gaia-ESO Survey special project is to produce a catalogue of self-consistent stellar parameters by combining measurements from high-resolution spectroscopy and precision asteroseismology. We carried out an iterative analysis of 90 K2@Gaia-ESO red giants. The spectroscopic values of Teff were used as input in the seismic analysis to obtain log(g) values. The seismic estimates of log(g) were then used to re-determine the spectroscopic values of Teff and [Fe/H]. Only one iteration was required to obtain parameters that are in good agreement for both methods and thus, to obtain the final stellar parameters. A detailed analysis of outliers was carried out to ensure a robust determination of the parameters. The results were then combined with Gaia DR2 data to compare the seismic log(g) with a parallax-based log(g) and to investigate instances of variations in the velocity and possible binaries within the dataset. This analysis produced a high-quality catalogue of stellar parameters for 90 red giant stars observed by both K2 and Gaia-ESO that were determined through iterations between spectroscopy and asteroseismology. We compared the seismic gravities with those based on Gaia parallaxes to find an offset which is similar to other studies that have used asteroseismology. Our catalogue also includes spectroscopic chemical abundances and radial velocities, as well as indicators for possible binary detections.
We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Survey. We present an unprecedented effort to create a homogeneous line list, which was used by several abundance an alysis groups to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available in electronic form. In general experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by hyperfine structure or isotopic splitting a concerted effort has been made to collate the necessary data for the individual line components. We also performed a detailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms. Synthetic spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 nm to 685 nm and from 850 nm to 895 nm we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen we recommend data based on Anstee-Barklem-OMara theory, where available, and to avoid lines of neutral species otherwise. Theoretical broadening data by R.L. Kurucz should be used for Sc II, Ti II, and Y II lines. For ionised rare-earth species the Unsold approximation with an enhancement factor of 1.5 for the line width can be used. Desirable improvements in atomic data were identified for a number of species, including Al I, S I, Cr II, Na I, Si I, Ca II, and Ni I.
109 - Sarah Martell 2016
The Galactic Archaeology with HERMES (GALAH) Survey is a massive observational project to trace the Milky Ways history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R$simeq$28,000) spectra taken w ith the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope (AAT), GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3 to 3 kpc and giants at 1 to 10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick disks, and also captures smaller samples of the bulge and halo. In this paper we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200,000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [alpha/Fe]), radial velocity, distance modulus and reddening for 10680 observations of 9860 Tycho-2 stars that may be included in the first Gaia data release.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا