ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH Survey: Observational Overview and Gaia DR1 companion

110   0   0.0 ( 0 )
 نشر من قبل Sarah Martell
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sarah Martell




اسأل ChatGPT حول البحث

The Galactic Archaeology with HERMES (GALAH) Survey is a massive observational project to trace the Milky Ways history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R$simeq$28,000) spectra taken with the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope (AAT), GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3 to 3 kpc and giants at 1 to 10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick disks, and also captures smaller samples of the bulge and halo. In this paper we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200,000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [alpha/Fe]), radial velocity, distance modulus and reddening for 10680 observations of 9860 Tycho-2 stars that may be included in the first Gaia data release.



قيم البحث

اقرأ أيضاً

The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 10^5 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectro graph FLAMES, using simultaneously the medium resolution (R~20,000) GIRAFFE spectrograph and the high resolution (R~47,000) UVES spectrograph. In this paper, we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, performs automatically sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is sigma~0.4 km s^-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s^-1) and to the radial velocities of the standard stars (~0.5 kms^-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the setups and instruments used for the survey will be established.
The GALAH survey is a large high-resolution spectroscopic survey using the newly commissioned HERMES spectrograph on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~28,000) spectra in four passbands for 392 stars simultaneously over a 2 degree field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V~14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, alpha-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
In order to accurately determine stellar properties, knowledge of the effective temperature of stars is vital. We implement Gaia and 2MASS photometry in the InfraRed Flux Method and apply it to over 360,000 stars across different evolutionary stages in the GALAH DR3 survey. We derive colour-effective temperature relations that take into account the effect of metallicity and surface gravity over the range 4000 to 8000 kelvin, from very metal-poor stars to super solar metallicities. The internal uncertainty of these calibrations is of order 40-80 kelvin depending on the colour combination used. Comparison against solar-twins, Gaia benchmark stars and the latest interferometric measurements validates the precision and accuracy of these calibrations from F to early M spectral types. We assess the impact of various sources of uncertainties, including the assumed extinction law, and provide guidelines to use our relations. Robust solar colours are also derived.
155 - X. Luri , M. Palmer , F. Arenou 2014
Aims: An effort has been undertaken to simulate the expected Gaia Catalogue, including the effect of observational errors. A statistical analysis of this simulated Gaia data is performed in order to better understand what can be obtained from the Gai a astrometric mission. This catalogue is used in order to investigate the potential yield in astrometric, photometric and spectroscopic information, and the extent and effect of observational errors on the true Gaia Catalogue. This article is a follow-up to Robin et. al. (2012), where the expected Gaia Catalogue content was reviewed but without the simulation of observational errors. Methods: The Gaia Object Generator (GOG) catalogue is analysed using the Gaia Analysis Tool (GAT), producing a number of statistics on the catalogue. Results: A simulated catalogue of one billion objects is presented, with detailed information on the 523 million individual single stars it contains. Detailed information is provided for the expected errors in parallax, position, proper motion, radial velocity, photometry in the four Gaia bands, and physical parameter determination including temperature, metallicity and line of sight extinction.
We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clust ers as age calibrators. We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members, and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration et al. (2017), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا