ﻻ يوجد ملخص باللغة العربية
For the 3d ferromagnets iron, cobalt and nickel we compute the spin-dependent inelastic electronic lifetimes due to carrier-carrier Coulomb interaction including spin-orbit coupling. We find that the spin-dependent density-of-states at the Fermi energy does not, in general, determine the spin dependence of the lifetimes because of the effective spin-flip transitions allowed by the spin mixing. The majority and minority electron lifetimes computed including spin-orbit coupling for these three 3-d ferromagnets do not differ by more than a factor of 2, and agree with experimental results.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv
We present an ab initio calculation of the k and spin-resolved electronic lifetimes in the half-metallic Heusler compounds Co(2)MnSi and Co(2)FeSi. We determine the spin-flip and spin-conserving contributions to the lifetimes and study in detail the
We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compar
We investigate ultrafast demagnetization due to electron-phonon interaction in a model band-ferromagnet. We show that the microscopic mechanism behind the spin dynamics due to electron-phonon interaction is the interplay of scattering and the precess
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise