ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana Dark Matter with a Coloured Mediator: Collider vs Direct and Indirect Searches

329   0   0.0 ( 0 )
 نشر من قبل Mathias Garny
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the signatures at the Large Hadron Collider of a minimal model where the dark matter particle is a Majorana fermion that couples to the Standard Model via one or several coloured mediators. We emphasize the importance of the production channel of coloured scalars through the exchange of a dark matter particle in the t-channel, and perform a dedicated analysis of searches for jets and missing energy for this model. We find that the collider constraints are highly competitive compared to direct detection, and can even be considerably stronger over a wide range of parameters. We also discuss the complementarity with searches for spectral features at gamma-ray telescopes and comment on the possibility of several coloured mediators, which is further constrained by flavour observables.



قيم البحث

اقرأ أيضاً

We discuss how to consistently use Effective Field Theories (EFTs) to set universal bounds on heavy-mediator Dark Matter at colliders, without prejudice on the model underlying a given effective interaction. We illustrate the method for a Majorana fe rmion, universally coupled to the Standard Model quarks via a dimension-6 axial-axial four-fermion operator. We recast the ATLAS mono-jet analysis and show that a considerable fraction of the parameter space, seemingly excluded by a naive EFT interpretation, is actually still unexplored. Consistently set EFT limits can be reinterpreted in any specific underlying model. We provide two explicit examples for the chosen operator and compare the reach of our model-independent method with that obtainable by dedicated analyses.
The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is c osmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model.
The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have establis hed increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.
The annihilations of WIMPs produce high energy gamma-rays in the final state. These high energy gamma-rays may be detected by IACTs such as the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes. Besides the popular targets such as the Galact ic Center or galaxy clusters such as VIRGO, dwarf spheroidal galaxies are privileged targets for Dark Matter annihilation signal searches. H.E.S.S. observations on the Sagittarius dwarf galaxy are presented. The modelling of the Dark Matter halo profile of Sagittarius dwarf is discussed. Constraints on the velocity-weighted cross section of Dark Matter particles are derived in the framework of Supersymmetric and Kaluza-Klein models. The future of H.E.S.S. will be briefly discussed.
High to ultrahigh energy neutrino detectors can uniquely probe the properties of dark matter $chi$ by searching for the secondary products produced through annihilation and/or decay processes. We evaluate the sensitivities to dark matter thermally av eraged annihilation cross section $langlesigma vrangle$ and partial decay width into neutrinos $Gamma_{chirightarrow ubar{ u}}$ (in the mass scale $10^7 leq m_chi/{rm GeV} leq 10^{15}$) for next generation observatories like POEMMA and GRAND. We show that in the range $ 10^7 leq m_chi/{rm GeV} leq 10^{11}$, space-based Cherenkov detectors like POEMMA have the advantage of full-sky coverage and rapid slewing, enabling an optimized dark matter observation strategy focusing on the Galactic center. We also show that ground-based radio detectors such as GRAND can achieve high sensitivities and high duty cycles in radio quiet areas. We compare the sensitivities of next generation neutrino experiments with existing constraints from IceCube and updated 90% C.L. upper limits on $langlesigma vrangle$ and $Gamma_{chirightarrow ubar{ u}}$ using results from the Pierre Auger Collaboration and ANITA. We show that in the range $ 10^7 leq m_chi/{rm GeV} leq 10^{11}$ POEMMA and GRAND10k will improve the neutrino sensitivity to particle dark matter by factors of 2 to 10 over existing limits, whereas GRAND200k will improve this sensitivity by two orders of magnitude. In the range $10^{11} leq m_chi/{rm GeV} leq 10^{15}$, POEMMAs fluorescence observation mode will achieve an unprecedented sensitivity to dark matter properties. Finally, we highlight the importance of the uncertainties related to the dark matter distribution in the Galactic halo, using the latest fit and estimates of the Galactic parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا