ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect dark matter searches at ultrahigh energy neutrino detectors

83   0   0.0 ( 0 )
 نشر من قبل Claire Gu\\'epin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High to ultrahigh energy neutrino detectors can uniquely probe the properties of dark matter $chi$ by searching for the secondary products produced through annihilation and/or decay processes. We evaluate the sensitivities to dark matter thermally averaged annihilation cross section $langlesigma vrangle$ and partial decay width into neutrinos $Gamma_{chirightarrow ubar{ u}}$ (in the mass scale $10^7 leq m_chi/{rm GeV} leq 10^{15}$) for next generation observatories like POEMMA and GRAND. We show that in the range $ 10^7 leq m_chi/{rm GeV} leq 10^{11}$, space-based Cherenkov detectors like POEMMA have the advantage of full-sky coverage and rapid slewing, enabling an optimized dark matter observation strategy focusing on the Galactic center. We also show that ground-based radio detectors such as GRAND can achieve high sensitivities and high duty cycles in radio quiet areas. We compare the sensitivities of next generation neutrino experiments with existing constraints from IceCube and updated 90% C.L. upper limits on $langlesigma vrangle$ and $Gamma_{chirightarrow ubar{ u}}$ using results from the Pierre Auger Collaboration and ANITA. We show that in the range $ 10^7 leq m_chi/{rm GeV} leq 10^{11}$ POEMMA and GRAND10k will improve the neutrino sensitivity to particle dark matter by factors of 2 to 10 over existing limits, whereas GRAND200k will improve this sensitivity by two orders of magnitude. In the range $10^{11} leq m_chi/{rm GeV} leq 10^{15}$, POEMMAs fluorescence observation mode will achieve an unprecedented sensitivity to dark matter properties. Finally, we highlight the importance of the uncertainties related to the dark matter distribution in the Galactic halo, using the latest fit and estimates of the Galactic parameters.



قيم البحث

اقرأ أيضاً

The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is c osmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model.
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultan eously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and Galactic Center gamma-rays observations, and Alpha Magnetic Spectrometer - 02 antiprotons observations, and also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic Center gamma ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
Indirect searches for dark matter (DM) have conventionally been applied to the products of DM annihilation or decay. If DM couples to light force carriers, however, it can be captured into bound states via dissipation of energy that may yield detecta ble signals. We extend the indirect searches to DM bound state formation and transitions between bound levels, and constrain the emission of unstable dark photons. Our results significantly refine the predicted signal flux that could be observed in experiments. As a concrete example, we use Fermi-LAT dwarf spheroidal observations to obtain constraints in terms of the dark photon mass and energy which we use to search for the formation of stable or unstable bound states.
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical backgroun d. The current and future experiments have a strong potential to detect antideuterons from dark matter. They are complementary not only with each other, but also with other dark matter searches.
We update our estimates of charged and neutral current neutrino total cross sections on isoscalar nucleons at ultrahigh energies using a global (x, Q^2) fit, motivated by the Froissart bound, to the F_2 (electron-proton) structure function utilizing the most recent analysis of the complete ZEUS and H1 data sets from HERA I. Using the large Q^2, small Bjorken-x limits of the wee parton model, we connect the ultrahigh energy neutrino cross sections directly to the large Q^2, small-x extrapolation of our new fit, which we assume saturates the Froissart bound. We compare both to our previous work, which utilized only the smaller ZEUS data set, as well as to recent results of a calculation using the ZEUS-S based global perturbative QCD parton distributions using the combined HERA I results as input. Our new results substantiate our previous conclusions, again predicting significantly smaller cross sections than those predicted by extrapolating pQCD calculations to neutrino energies above 10^9 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا