ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Near-IR Transmission Spectroscopy of the Super-Earth HD 97658b

282   0   0.0 ( 0 )
 نشر من قبل Heather Knutson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3s scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.



قيم البحث

اقرأ أيضاً

229 - D. K. Sing , F. Pont , S. Aigrain 2011
We present Hubble Space Telescope optical and near-ultraviolet transmission spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900-57 00 Ang and reach per-exposure signal-to-noise levels greater than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependance of the planetary radius and measure the exoplanets atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broadband transmission spectrum covering the full optical regime. The STIS data also shows unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarfs stellar spots, estimating spot temperatures around Teff~4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST ACS camera. The high-altitude haze is now found to cover the entire optical regime and is well characterised by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.
Recent years have seen increasing interest in the characterization of sub-Neptune sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of t his kind, and we present the transmission spectrum of this planet by combining four HST transits, twelve Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission spectrum has higher signal to noise ratio than that from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1 to 1.7 microns reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are not conclusive as no model provides an excellent match to our data. Nonetheless we find that atmospheres with high C/O ratios (C/O >~ 0.8) and metallicities of >~ 100x solar metallicity are favored. We combine the mid-transit times from all the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295 +/- 0.000005 d, with a best-fit transit time center at T_0 = 2456361.80690 +/- 0.00038 (BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34 +/- 2 d) and stellar activity cycle (9.6 yr) of the host star HD 97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000 K and with sizes between 1 and 4 R_Earth. We find that at least a third of small planets cooler than 1000 K can be well characterized using JWST, and of those, HD 97658b is ranked fifth, meaning it remains a high-priority target for atmospheric characterization.
We observed the 2019 January total lunar eclipse with the Hubble Space Telescopes STIS spectrograph to obtain the first near-UV (1700-3200 $r{A}$) observation of Earth as a transiting exoplanet. The observatories and instruments that will be able to perform transmission spectroscopy of exo-Earths are beginning to be planned, and characterizing the transmission spectrum of Earth is vital to ensuring that key spectral features (e.g., ozone, or O$_3$) are appropriately captured in mission concept studies. O$_3$ is photochemically produced from O$_2$, a product of the dominant metabolism on Earth today, and it will be sought in future observations as critical evidence for life on exoplanets. Ground-based observations of lunar eclipses have provided the Earths transmission spectrum at optical and near-IR wavelengths, but the strongest O$_3$ signatures are in the near-UV. We describe the observations and methods used to extract a transmission spectrum from Hubble lunar eclipse spectra, and identify spectral features of O$_3$ and Rayleigh scattering in the 3000-5500 r{A} region in Earths transmission spectrum by comparing to Earth models that include refraction effects in the terrestrial atmosphere during a lunar eclipse. Our near-UV spectra are featureless, a consequence of missing the narrow time span during the eclipse when near-UV sunlight is not completely attenuated through Earths atmosphere due to extremely strong O$_3$ absorption and when sunlight is transmitted to the lunar surface at altitudes where it passes through the O$_3$ layer rather than above it.
Atmospheric characterisation of temperate, rocky planets is the holy grail of exoplanet studies. These worlds are at the limits of our capabilities with current instrumentation in transmission spectroscopy and challenge our state-of-the-art statistic al techniques. Here we present the transmission spectrum of the temperate Super-Earth LHS 1140b using the Hubble Space Telescope (HST). The Wide Field Camera 3 (WFC3) G141 grism data of this habitable zone (T$_{rm{eq}}$ = 235 K) Super-Earth (R = 1.7 $R_oplus$), shows tentative evidence of water. However, the signal-to-noise ratio, and thus the significance of the detection, is low and stellar contamination models can cause modulation over the spectral band probed. We attempt to correct for contamination using these models and find that, while many still lead to evidence for water, some could provide reasonable fits to the data without the need for molecular absorption although most of these cause also features in the visible ground-based data which are nonphysical. Future observations with the James Webb Space Telescope (JWST) would be capable of confirming, or refuting, this atmospheric detection.
We present Hubble Space Telescope optical coronagraphic polarization imaging observations of the dusty debris disk HD 61005. The scattered light intensity image and polarization structure reveal a highly inclined disk with a clear asymmetric, swept b ack component, suggestive of significant interaction with the ambient interstellar medium. The combination of our new data with the published 1.1 micron discovery image shows that the grains are blue scattering with no strong color gradient as a function of radius, implying predominantly sub-micron sized grains. We investigate possible explanations that could account for the observed swept back, asymmetric morphology. Previous work has suggested that HD 61005 may be interacting with a cold, unusually dense interstellar cloud. However, limits on the intervening interstellar gas column density from an optical spectrum of HD 61005 in the Na I D lines render this possibility unlikely. Instead, HD 61005 may be embedded in a more typical warm, low-density cloud that introduces secular perturbations to dust grain orbits. This mechanism can significantly distort the ensemble disk structure within a typical cloud crossing time. For a counterintuitive relative flow direction--parallel to the disk midplane--we find that the structures generated by these distortions can very roughly approximate the HD 61005 morphology. Future observational studies constraining the direction of the relative interstellar medium flow will thus provide an important constraint for future modeling. Independent of the interpretation for HD 61005, we expect that interstellar gas drag likely plays a role in producing asymmetries observed in other debris disk systems, such as HD 15115 and Delta-Velorum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا