ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble WFC3 Spectroscopy of the Habitable-zone Super-Earth LHS 1140 b

192   0   0.0 ( 0 )
 نشر من قبل Billy Edwards
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atmospheric characterisation of temperate, rocky planets is the holy grail of exoplanet studies. These worlds are at the limits of our capabilities with current instrumentation in transmission spectroscopy and challenge our state-of-the-art statistical techniques. Here we present the transmission spectrum of the temperate Super-Earth LHS 1140b using the Hubble Space Telescope (HST). The Wide Field Camera 3 (WFC3) G141 grism data of this habitable zone (T$_{rm{eq}}$ = 235 K) Super-Earth (R = 1.7 $R_oplus$), shows tentative evidence of water. However, the signal-to-noise ratio, and thus the significance of the detection, is low and stellar contamination models can cause modulation over the spectral band probed. We attempt to correct for contamination using these models and find that, while many still lead to evidence for water, some could provide reasonable fits to the data without the need for molecular absorption although most of these cause also features in the visible ground-based data which are nonphysical. Future observations with the James Webb Space Telescope (JWST) would be capable of confirming, or refuting, this atmospheric detection.

قيم البحث

اقرأ أيضاً

In the last few years many exoplanets in the habitable zone (HZ) of M-dwarfs have been discovered, but the X-ray/UV activity of cool stars is very different from that of our Sun. The high-energy radiation environment influences the habitability, play s a crucial role for abiogenesis, and impacts planetary atmospheres. LHS 1140b is a super-Earth-size planet orbiting in the HZ of LHS 1140, an M4.5 dwarf at ~15 parsecs. We present the results of a Swift X-ray/UV observing campaign. We characterize for the first time the X-ray/UV radiation environment of LHS 1140b. We measure the variability of the near ultraviolet (NUV) flux and estimate the far ultraviolet (FUV) flux with a correlation between FUV and NUV flux of a sample of low-mass stars in the GALEX archive. We highlight the presence of a dominating X-ray source close to the J2000 coordinates of LHS 1140, characterize its spectrum, and derive an X-ray flux upper limit for LHS 1140. We find that this contaminant source could have influenced the previously estimated spectral energy distribution. No significant variation of the NUV flux of LHS 1140 is found over 3 months, and we do not observe any flare during the 38 ks on the target. LHS 1140 is in the 25th percentile of least variable M4-M5 dwarfs of the GALEX sample. Analyzing the UV flux experienced by the HZ planet LHS 1140b, we find that outside the atmosphere it receives a NUV flux <2% with respect to that of the present-day Earth, while the FUV/NUV ratio is ~100-200 times higher. This represents a lower limit to the true FUV/NUV ratio since the GALEX FUV band does not include Lyman-alpha, which dominates the FUV output of low-mass stars. This is a warning for future searches for biomarkers, which must take into account this high ratio. The relatively low level and stability of UV flux experienced by LHS 1140b should be favorable for its present-day habitability.
Terrestrial extrasolar planets around low-mass stars are prime targets when searching for atmospheric biosignatures with current and near-future telescopes. The habitable-zone Super-Earth LHS 1140 b could hold a hydrogen-dominated atmosphere and is a n excellent candidate for detecting atmospheric features. In this study, we investigate how the instellation and planetary parameters influence the atmospheric climate, chemistry, and spectral appearance of LHS 1140 b. We study the detectability of selected molecules, in particular potential biosignatures, with the upcoming James Webb Space Telescope (JWST) and Extremely Large Telescope (ELT). In a first step we use the coupled climate-chemistry model, 1D-TERRA, to simulate a range of assumed atmospheric chemical compositions dominated by H$_2$ and CO$_2$. Further, we vary the concentrations of CH$_4$ by several orders of magnitude. In a second step we calculate transmission spectra of the simulated atmospheres and compare them to recent transit observations. Finally, we determine the observation time required to detect spectral bands with low resolution spectroscopy using JWST and the cross-correlation technique using ELT. In H$_2$-dominated and CH$_4$-rich atmospheres O$_2$ has strong chemical sinks, leading to low concentrations of O$_2$ and O$_3$. The potential biosignatures NH$_3$, PH$_3$, CH$_3$Cl and N$_2$O are less sensitive to the concentration of H$_2$, CO$_2$ and CH$_4$ in the atmosphere. In the simulated H$_2$-dominated atmosphere the detection of these gases might be feasible within 20 to 100 observation hours with ELT or JWST, when assuming weak extinction by hazes. If further observations of LHS 1140 b suggest a thin, clear, hydrogen-dominated atmosphere, the planet would be one of the best known targets to detect biosignature gases in the atmosphere of a habitable-zone rocky exoplanet with upcoming telescopes.
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly-circular 9.4-year orbit. The combination of precise radial-velocity measu rements from three telescopes reveals the presence of a planet with a period of 35.68+/-0.03 days and minimum mass (m sin i) of 5.4+/-1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e=0.18+/-0.13) towards the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a super-Venus, featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own Solar system.
We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth o f the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 pm 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by sim80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and that (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.
We present an analysis of the significantly expanded HARPS 2011 radial velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our analysis reaches substantially different conclusions regarding the evidence for a Super-Earth-mass planet in the stars Habitable Zone. We were able to reproduce their reported chi_{ u}^2 and RMS values only after removing some outliers from their models and refitting the trimmed down RV set. A suite of 4000 N-body simulations of their Keplerian model all resulted in unstable systems and revealed that their reported 3.6sigma detection of e=0.32 for the eccentricity of GJ 581e is manifestly incompatible with the systems dynamical stability. Furthermore, their Keplerian model, when integrated only over the time baseline of the observations, significantly increases the chi_{ u}^2 and demonstrates the need for including non-Keplerian orbital precession when modeling this system. We find that a four-planet model with all of the planets on circular or nearly circular orbits provides both an excellent self-consistent fit to their RV data and also results in a very stable configuration. The periodogram of the residuals to a 4-planet all-circular-orbit model reveals significant peaks that suggest one or more additional planets in this system. We conclude that the present 240-point HARPS data set, when analyzed in its entirety, and modeled with fully self-consistent stable orbits, by and of itself does offer significant support for a fifth signal in the data with a period near 32 days. This signal has a False Alarm Probability of <4% and is consistent with a planet of minimum mass of 2.2 Earth-masses, orbiting squarely in the stars Habitable Zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibility
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا