ﻻ يوجد ملخص باللغة العربية
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit coupling. In particular, at low densities when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the $[bar{1}10]$ axis, which is opposite than what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.
We report on numerical simulations of the intrinsic spin Hall effect in semiconductor quantum wires as a function of the Rashba spin-orbit coupling strength, the electron density, and the width of the wire. We find that the strength of the spin Hall
We report the first electrical manipulation and detection of the mesoscopic intrinsic spin-Hall effect (ISHE) in semiconductors through non-local electrical measurement in nano-scale H-shaped structures built on high mobility HgTe/HgCdTe quantum well
We investigate the spin Hall effect (SHE) in a wide class of spin-orbit coupling systems by using spin force picture. We derive the general relation equation between spin force and spin current and show that the longitudinal force component can induc
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire ele
The Rashba spin-orbit coupling arising from structure inversion asymmetry couples spin and momentum degrees of freedom providing a suitable (and very intensively investigated) environment for spintronic effects and devices. Here we show that in the p