ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic intrinsic spin Hall effect in quantum wires

211   0   0.0 ( 0 )
 نشر من قبل Aron Cummings
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit coupling. In particular, at low densities when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the $[bar{1}10]$ axis, which is opposite than what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.



قيم البحث

اقرأ أيضاً

129 - A.W. Cummings , R. Akis , 2014
We report on numerical simulations of the intrinsic spin Hall effect in semiconductor quantum wires as a function of the Rashba spin-orbit coupling strength, the electron density, and the width of the wire. We find that the strength of the spin Hall effect does not depend monotonically on these parameters, but instead exhibits a local maximum. This behavior is explained by considering the dispersion relation of the electrons in the wire, which is characterized by the anticrossing of adjacent subbands. These results lead to a simple estimate of the optimal wire width for spin Hall transport experiments, and simulations indicate that this optimal width is independent of disorder. The anticrossing of adjacent subbands is related to a quantum phase transition in momentum space, and is accompanied by an enhancement of the Berry curvature and subsequently in the magnitude of the spin Hall effect.
288 - C. Bruene 2008
We report the first electrical manipulation and detection of the mesoscopic intrinsic spin-Hall effect (ISHE) in semiconductors through non-local electrical measurement in nano-scale H-shaped structures built on high mobility HgTe/HgCdTe quantum well s. By controlling the strength of the spin-orbit splittings and the n-type to p-type transition by a top-gate, we observe a large non-local resistance signal due to the ISHE in the p-regime, of the order of kOhms, which is several orders of magnitude larger than in metals. In the n-regime, as predicted by theory, the signal is at least an order of magnitude smaller. We verify our experimental observation by quantum transport calculations which show quantitative agreement with the experiments.
We investigate the spin Hall effect (SHE) in a wide class of spin-orbit coupling systems by using spin force picture. We derive the general relation equation between spin force and spin current and show that the longitudinal force component can induc e a spin Hall current, from which we reproduce the spin Hall conductivity obtained previously using Kubos formula. This simple spin force picture gives a clear and intuitive explanation for SHE.
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire ele ctron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.
The Rashba spin-orbit coupling arising from structure inversion asymmetry couples spin and momentum degrees of freedom providing a suitable (and very intensively investigated) environment for spintronic effects and devices. Here we show that in the p resence of strong disorder, non-homogeneity in the spin-orbit coupling gives rise to a finite spin Hall conductivity in contrast with the corresponding case of a homogeneous linear spin-orbit coupling. In particular, we examine the inhomogeneity arising from a striped structure for a two-dimensional electron gas, affecting both density and Rashba spin-orbit coupling. We suggest that this situation can be realized at oxide interfaces with periodic top gating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا