ﻻ يوجد ملخص باللغة العربية
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a superconducting state with non-zero total momentum Cooper pairs in a large magnetic field, was first predicted about 50 years ago, and since then became an important concept in many branches of physics. Despite intensive search in various materials, unambiguous experimental evidence for the FFLO phase is still lacking in experiments. In this paper, we show that both FF (uniform order parameter with plane-wave phase) and LO phase (spatially varying order parameter amplitude) can be observed using fermionic cold atoms in spin-orbit coupled optical lattices. The increasing spin-orbit coupling enhances the FF phase over the LO phase. The coexistence of superfluid and magnetic orders is also found in the normal BCS phase. The pairing mechanism for different phases is understood by visualizing superfluid pairing densities in different spin-orbit bands. The possibility of observing similar physics using spin-orbit coupled superconducting ultra-thin films is also discussed.
Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have b
We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of
We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to t
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field