ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices

257   0   0.0 ( 0 )
 نشر من قبل Chuanwei Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a superconducting state with non-zero total momentum Cooper pairs in a large magnetic field, was first predicted about 50 years ago, and since then became an important concept in many branches of physics. Despite intensive search in various materials, unambiguous experimental evidence for the FFLO phase is still lacking in experiments. In this paper, we show that both FF (uniform order parameter with plane-wave phase) and LO phase (spatially varying order parameter amplitude) can be observed using fermionic cold atoms in spin-orbit coupled optical lattices. The increasing spin-orbit coupling enhances the FF phase over the LO phase. The coexistence of superfluid and magnetic orders is also found in the normal BCS phase. The pairing mechanism for different phases is understood by visualizing superfluid pairing densities in different spin-orbit bands. The possibility of observing similar physics using spin-orbit coupled superconducting ultra-thin films is also discussed.



قيم البحث

اقرأ أيضاً

Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have b een classified according to a ten-fold scheme, the possible realisation of topological states for bosons has not been much explored yet. Furthermore, the role of interactions is far from being understood. Here, we show that a topological state of matter exclusively driven by interactions may occur in the p-band of a Lieb optical lattice filled with ultracold bosons. The single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle level, nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the excitations, carrying a non-zero Chern number. Our work introduces an experimentally realistic strategy for the formation of interaction-driven topological states of bosons.
We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the phase diagram strongly depends on the parity of $N$. First, we single out charged, spin-singlet, degrees of freedom, that carry a pseudo-spin ${cal S}=N/2$ allowing to formulate a Haldane conjecture: for attractive interactions, we establish the emergence of Haldane insulating phases when $N$ is even, whereas a metallic behavior is found when $N$ is odd. We point out that the $N=1,2$ cases do emph{not} have the generic properties of each family. The metallic phase for $N$ odd and larger than 1 has a quasi-long range singlet pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating phases with even $N$ further depend on the parity of N/2. In this respect, within the low-energy approach, we argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann {it et al.} [Pollmann {it et al.}, arXiv:0909.4059 (2009)].
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
119 - Ming Gong , Yinyin Qian , Mi Yan 2012
We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to t he Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations.
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field . SOC tunability is explicitly demonstrated by adopting a mean-field tight-binding model for the BEC mixture and by performing an averaging approach in the strong modulation limit. In this case, the system can be reduced to an unmodulated vector discrete nonlinear Schrodinger equation with a rescaled SOC tunning parameter $alpha$, which depends only on the ratio between amplitude and frequency of the applied Zeeman field. The dependence of the spectrum of the linear system on $alpha$ has been analytically characterized. In particular, we show that extremal curves (ground and highest excited states) of the linear spectrum are continuous piecewise functions (together with their derivatives) of $alpha$, which consist of a finite number of decreasing band lobes joined by constant lines. This structure also remains in presence of not too large nonlinearities. Most important, the interactions introduce a number of localized states in the band-gaps that undergo change of properties as they collide with band lobes. The stability of ground states in the presence of the modulating field has been demonstrated by real time evolutions of the original (un-averaged) system. Localization properties of the ground state induced by the SOC tuning, and a parameter design for possible experimental observation have also been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا