ﻻ يوجد ملخص باللغة العربية
In this paper, we provide a comprehensive study of the quantum magnetism in the Mott insulating phases of the 1D Bose-Hubbard model with abelian or non-abelian synthetic gauge fields, using the Density Matrix Renormalization Group (DMRG) method. We focus on the interplay between the synthetic gauge field and the asymmetry of the interactions, which give rise to a very general effective magnetic model: a XYZ model with various Dzyaloshinskii-Moriya (DM) interactions. The properties of the different quantum magnetic phases and phases transitions of this model are investigated.
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s
We introduce a versatile and practical framework for applying matrix product state techniques to continuous quantum systems. We divide space into multiple segments and generate continuous basis functions for the many-body state in each segment. By co
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled sy
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which m