ﻻ يوجد ملخص باللغة العربية
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled symmetric model with an emphasis on the spin and charge excitations. In the one-dimensional version of the model it is found that the spin gap is smaller than the charge gap below a certain value of $U_{cf}$ and the reversed inequality is valid for stronger $U_{cf}$. This behavior is also verified by the behavior of the spin and density correlation functions. We also perform a quantum information analysis of the model and determine the entanglement map of the f and conduction electrons. It is revealed that for a certain $U_{cf}$ the ground state is dominated by the configuration in which the conduction and f electrons are strongly entangled, and the ground state is almost a product state. For larger $U_{cf}$ the sites are occupied alternatingly dominantly by two f electrons or by two conduction electrons.
The density matrix renormalization group method is applied to obtain the ground state phase diagram of the single impurity Anderson model on the honeycomb lattice at half filling. The calculation of local static quantities shows that the phase diagra
Using the Density Matrix Renormalization Group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the $(t_{2g})^{4}$ sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some mu
We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, $U_{cf}$, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of t
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction).
The real part of optical conductivity, $text{Re}sigma(omega)$, of the Mott insulators has a large amount of information on how spin and charge degrees of freedom interact with each other. By using the time-dependent density-matrix renormalization gro