ﻻ يوجد ملخص باللغة العربية
Multiple zero-energy Majorana fermions (MFs) with spatially overlapping wave functions can survive only if their splitting is prevented by an underlying symmetry. Here we show that, in quasi-one-dimensional (Q1D) time reversal invariant topological superconductors (class DIII), a realistic model for superconducting lithium molybdenum purple bronze and certain families of organic superconductors, multiple Majorana-Kramers pairs with strongly overlapping wave functions persist at zero energy even in the absence of an easily identifiable symmetry. We find that similar results hold in the case of Q1D semiconductor-superconductor heterostructures (class D) with transverse hopping t_{perp} much smaller than longitudinal hopping t_x. Our results, explained in terms of special properties of the Hamiltonian and wave functions, underscore the importance of hidden accidental symmetries in topological superconductors.
Coupling a semiconducting nanowire to a microwave cavity provides a powerfull means to assess the presence or absence of isolated Majorana fermions in the nanowire. These exotic bound states can cause a significant cavity frequency shift but also a s
We propose a platform for braiding Majorana non-Abelian anyons based on a heterostructure between a $d$-wave high-$T_c$ superconductor and a quantum spin-Hall insulator. It has been recently shown that such a setup for a quantum spin-Hall insulator l
We focus on inducing topological state from regular, or irregular scattering in (i) p-wave superconducting wires and (ii) Rashba wires proximity coupled to an s-wave superconductor. We find that contrary to common expectations the topological propert
In this paper, we numerically study the non-Abelian statistics of the zero-energy Majorana fermions on the end of Majorana chain and show its application to quantum computing by mapping it to a spin model with special symmetry. In particular, by usin
Recently, Hao Huang proved the Sensitivity Conjecture, an important result about complexity measures of Boolean functions. We will discuss how this simple and elegant proof turns out to be closely related to physics concepts of the Jordan-Wigner tran