ﻻ يوجد ملخص باللغة العربية
The compartmental models used to study epidemic spreading often assume the same susceptibility for all individuals, and are therefore, agnostic about the effects that differences in susceptibility can have on epidemic spreading. Here we show that--for the SIS model--differential susceptibility can make networks more vulnerable to the spread of diseases when the correlation between a nodes degree and susceptibility are positive, and less vulnerable when this correlation is negative. Moreover, we show that networks become more likely to contain a pocket of infection when individuals are more likely to connect with others that have similar susceptibility (the network is segregated). These results show that the failure to include differential susceptibility to epidemic models can lead to a systematic over/under estimation of fundamental epidemic parameters when the structure of the networks is not independent from the susceptibility of the nodes or when there are correlations between the susceptibility of connected individuals.
Infectious diseases are a significant threat to human society which was over sighted before the incidence of COVID-19, although according to the report of the World Health Organisation (WHO) about 4.2 million people die annually due to infectious dis
We model a social-encounter network where linked nodes match for reproduction in a manner depending probabilistically on each node`s attractiveness. The developed model reveals that increasing either the network`s mean degree or the ``choosiness`` ex
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i
This paper re-introduces the network reliability polynomial - introduced by Moore and Shannon in 1956 -- for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for est
In this letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations (DDEs), which shows