ﻻ يوجد ملخص باللغة العربية
Infectious diseases are a significant threat to human society which was over sighted before the incidence of COVID-19, although according to the report of the World Health Organisation (WHO) about 4.2 million people die annually due to infectious disease. Due to recent COVID-19 pandemic, more than 2 million people died during 2020 and 96.2 million people got affected by this devastating disease. Recent research shows that applying individual interactions and movements data could help managing the pandemic though modelling the spread of infectious diseases on social contact networks. Infectious disease spreading can be explained with the theories and methods of diffusion processes where a dynamic phenomena evolves on networked systems. In the modelling of diffusion process, it is assumed that contagious items spread out in the networked system through the inter-node interactions. This resembles spreading of infectious virus, e.g. spread of COVID-19, within a population through individual social interactions. The evolution behaviours of the diffusion process are strongly influenced by the characteristics of the underlying system and the mechanism of the diffusion process itself. Thus, spreading of infectious disease can be explained how people interact with each other and by the characteristics of the disease itself. This paper presenters the relevant theories and methodologies of diffusion process that can be used to model the spread of infectious diseases.
Policymakers commonly employ non-pharmaceutical interventions to manage the scale and severity of pandemics. Of non-pharmaceutical interventions, social distancing policies -- designed to reduce person-to-person pathogenic spread -- have risen to rec
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For
We investigate critical behaviors of a social contagion model on weighted networks. An edge-weight compartmental approach is applied to analyze the weighted social contagion on strongly heterogenous networks with skewed degree and weight distribution
Human social behavior plays a crucial role in how pathogens like SARS-CoV-2 or fake news spread in a population. Social interactions determine the contact network among individuals, while spreading, requiring individual-to-individual transmission, ta
In this study, we develop the mathematical model to understand the coupling between the spreading dynamics of infectious diseases and the mobility dynamics through urban transportation systems. We first describe the mobility dynamics of the urban pop