ﻻ يوجد ملخص باللغة العربية
We investigate the properties of orphan penumbrae, which are photospheric filamentary structures observed in active regions near polarity inversion lines that resemble the penumbra of regular sunspots but are not connected to any umbra. We use Hinode data from the Solar Optical Telescope to determine the properties of orphan penumbrae. Spectropolarimetric data are employed to obtain the vector magnetic field and line-of-sight velocities in the photosphere. Magnetograms are used to study the overall evolution of these structures, and G-band and Ca II H filtergrams are to investigate their brightness and apparent horizontal motions. Orphan penumbrae form between regions of opposite polarity in places with horizontal magnetic fields. Their magnetic configuration is that of $Omega$-shaped flux ropes. In the two cases studied here, the opposite-polarity regions approach each other with time and the whole structure submerges as the penumbral filaments disappear. Orphan penumbrae are very similar to regular penumbrae, including the existence of strong gas flows. Therefore, they could have a similar origin. The main difference between them is the absence of a background magnetic field in orphan penumbrae. This could explain most of the observed differences. The fast flows we detect in orphan penumbrae may be caused by the siphon flow mechanism. Based on the similarities between orphan and regular penumbrae, we propose that the Evershed flow is also a manifestation of siphon flows.
Recently, there have been some reports of unusually strong photospheric magnetic fields (which can reach values of over 7 kG) inferred from Hinode SOT/SP sunspot observations within penumbral regions. These superstrong penumbral fields are even large
Sunspot penumbrae show high-velocity patches along the periphery. The high-velocity downflow patches are believed to be the return channels of the Evershed flow. We aim to investigate their structure in detail using Hinode SOT/SP observations. We emp
Vertical magnetic fields have been known to exist in the internetwork region for decades, while the properties of horizontal magnetic fields have recently been extensively investigated with textit{Hinode}. Vertical and horizontal magnetic fields in t
Spatial distributions of the dominant oscillation frequency obtained for four sunspots show a feature shared by all the analysed levels of the solar atmosphere in these sunspots. This feature located in the inner penumbrae indicates that this region
We obtained a long exposure vector magnetogram of the quiet Sun photosphere at the disk center with wide FOV of $51 times 82$. The observation was performed at Fe I 525.0 nm with the shutter-less mode of the Narrow Band Filter Imager of the Solar Opt